K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Sửa đề: cho a, b là các số nguyên thỏa mãn   \(\left(7a-21b+5\right)\left(a-3b+1\right)⋮7\)  .....

Giải: Ta có: \(\left(7a-21b\right)⋮7\)   nên    \(\left(7a-21b+5\right)\)   không chia hết cho 7

Mà theo đề   \(\left(7a-21b+5\right)\left(a-3b+1\right)⋮7\)   suy ra    \(\left(a-3b+1\right)⋮7\)

Lại có:   \(\left(42a+14b+14\right)⋮7\)   vì các số hạng đều chia hết cho 7

Do đó    \(\left[\left(a-3b+1\right)+\left(42a+14b+14\right)\right]⋮7\)    hay    \(\left(43a+11b+15\right)⋮7\)

23 tháng 11 2023

7a - 21b + 5 = 7 ( a - 3b ) + 5 không chia hết cho 7.

Vậy 7a - 21b + 5 và 7 là hai số nguyên tố cùng nhau.

Vì ( 7a - 2b + 5 ) ( a - 3b + 1 ) chia hết cho 7 nên a - 3b + 1 chia hết cho 7.

Vì 42a + 14b + 14 chia hết cho 7 nên ( 42a + 14b + 14 ) + ( a - 3b + 1 ) chia hết cho 7.

Vậy 43a + 11b + 15 chia hết cho 7.

19 tháng 6 2016

7a - 21b + 5 = 7 ( a - 3b ) + 5 không chia hết cho 7.

Vậy 7a - 21b + 5 và 7 là hai số nguyên tố cùng nhau.

Vì ( 7a - 2b + 5 ) ( a - 3b + 1 ) chia hết cho 7 nên a - 3b + 1 chia hết cho 7.

Vì 42a + 14b + 14 chia hết cho 7 nên ( 42a + 14b + 14 ) + ( a - 3b + 1 ) chia hết cho 7.

Vậy 43a + 11b + 15 chia hết cho 7.

18 tháng 6 2016

Ta có:

a - 3b + 1 chia hết cho 7.

Mà ta có: 42a + 14b + 14 chia hết cho 7. 

Do đó ( 42a + 14 b + 14 ) + ( ( a - 3b + 1 ) = 43a +11b + 15 chia hết cho 7. ( đpcm) 

23 tháng 11 2023

Ta có:

a - 3b + 1 chia hết cho 7.

Mà ta có: 42a + 14b + 14 chia hết cho 7. 

Do đó ( 42a + 14 b + 14 ) + ( ( a - 3b + 1 ) = 43a +11b + 15 chia hết cho 7. ( đpcm) 

NV
25 tháng 3 2021

Do \(P\left(a\right)=P\left(b\right)=P\left(c\right)=P\left(d\right)=7\) nên \(P\left(x\right)-7=0\) có 4 nghiệm nguyên phân biệt

\(\Rightarrow P\left(x\right)-7=\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)Q\left(x\right)\) với Q(x) là đa thức có giá trị nguyên khi x nguyên

Xét phương trình: \(P\left(x\right)-14=0\)

\(\Leftrightarrow P\left(x\right)-7=7\)

\(\Leftrightarrow\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)Q\left(x\right)=7\) (1)

Do a;b;c;d phân biệt \(\Rightarrow\) vế trái là tích của ít nhất 4 số nguyên phân biệt khi x nguyên

Mà 7 là số nguyên tố nên chỉ có thể phân tích thành tích của 2 số nguyên phân biệt

\(\Rightarrow\) Không tồn tại x nguyên thỏa mãn (1) hay \(P\left(x\right)-14=0\) ko có nghiệm nguyên

14 tháng 4 2017

tk mình nha

chúc bạn học tốt

^.^

d) Ta có: \(n^2+5n+9⋮n+3\)

\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)

\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)

mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)

nên \(3⋮n+3\)

\(\Leftrightarrow n+3\inƯ\left(3\right)\)

\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{-2;-4;0;-6\right\}\)

Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)

8 tháng 3 2021

d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3

⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3

⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3

mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3

nên 3⋮n+33⋮n+3

⇔n+3∈Ư(3)⇔n+3∈Ư(3)

⇔n+3∈{1;−1;3;−3}