Tìm số tự nhiên a để biểu thức 2023 * ( 10 - a) có giá trị bé nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
Vì 1003 < 999, nên phần tử trong dấu chia sẽ nhỏ hơn 1
Vậy giá trị nhỏ nhất của biểu thức A làA = 2023 - 1003:999 = 2023 - 1 = 2022.
a) Để 2001 + 420 : (a-7) có giá trị lớn nhất
=> 420 : (a-7) = 420
a- 7 = 420 : 420
a - 7 = 1
a = 1 + 7
a = 8
b) Để 2001 + 420 : ( a-7) có giá trị nhỏ nhất
=> 420 : ( a- 7) = 1
a - 7 = 420
a = 420 + 7
a = 427
Các bn giúp mk nhanh nhanh nha câu b thôi câu a mk bt rồi nếu ko hiểu bảo mk gửi lại cho
Ta có biểu thức: \(2023\times\left(10-a\right)\)
Có giá trị bé nhất khi \(10-a\) phải bé nhất
Mà \(10-a\) bé nhất thì phải bằng 1
Ta có: \(10-a=1\)
Vậy: \(a=9\) thì biểu thức sẽ có giá trị nhỏ nhất.
2023 *(10-9)