chứng minh P(x)=x44+3x22+13 vô nghiệm
hellp!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(\(x\)) = \(x^4\) + 3\(x^2\) - 4033
P(\(x\)) = \(x^4\) + 2.\(\dfrac{3}{2}\)\(x^2\) + \(\dfrac{9}{4}\) - \(\dfrac{16141}{4}\)
P(\(x\)) = (\(x^2\) + \(\dfrac{3}{2}\))2 - \(\dfrac{16141}{4}\)
P(\(x\)) = 0 ⇔ (\(x^2\) + \(\dfrac{3}{2}\))2 - \(\dfrac{16141}{4}\) = 0
⇒ (\(x^2\) + \(\dfrac{3}{2}\))2 = \(\dfrac{16141}{4}\)
\(x^2\) + \(\dfrac{3}{2}\) = - \(\sqrt{\dfrac{16141}{4}}\) (loại)
\(x^2\) + \(\dfrac{3}{2}\) = \(\sqrt{\dfrac{16141}{4}}\)
\(x^2\) = \(\sqrt{\dfrac{16141}{4}}\) - \(\dfrac{3}{2}\) > 0
\(x\) = \(\mp\) \(\sqrt{\sqrt{\dfrac{16141}{4}}-\dfrac{3}{2}}\)
Vậy việc chứng minh: P(\(x\)) vô nghiệm là không xảy ra
x4-3x2+6x+13=0
<=>x4-4x2+4+x2+6x+9=0
<=>(x2-2)2+(x-3)2=0
Ta thấy x2-2 khác x-3
=>PT vô nghiệm
\(f\left(x\right)=\left(x-1\right)\left(x+2\right)-\left(x-3\right)\)
\(=x^2+x-2-x+3\)
\(=x^2+1>1\forall x\)
Vậy \(f\left(x\right)\)vô nghiệm
\(g\left(x\right)=\left(3-x\right)\left(4+x\right)-\left(13-x\right)\)
\(=12-x-x^2-13+x\)
\(=-x^2-1\)
\(=-\left(x^2+1\right)< -1\forall x\)
Vậy \(g\left(x\right)\)vô nghiệm
\(-x^2+x-5\)
=\(-x^2+1.x-2^2+1\)
=\(x.\left(x-2\right)+2\left(x-2\right)+1\)
=\(\left(x-2\right)^2+1\ge1\ne0\)
Vậy đa thức trên vô nghiệm.
Bài làm:
Ta có: \(x^2-x-6=0\)
\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)-\frac{25}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\left(\frac{5}{2}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{5}{2}\\x-\frac{1}{2}=-\frac{5}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
=> Mâu thuẫn với đề bài
=> điều giả sử sai
=> Phương trình có 2 nghiệm x=3 và x=-2
\(x^2-x-6=0\)
Vì \(\left(-1\right)^2-4.\left(-6\right)=1+24>0\)
Nên pt có 2 nghiệm phân biệt :
\(x_1=\frac{-1-5}{2}=-3;x_2=\frac{-1+5}{2}=2\)
=> ko thể CM pt vô nghiệm
x2 + x + 1 = x2 + \(\frac{1}{2}\). x+ \(\frac{1}{2}\).x + \(\frac{1}{4}\)+ \(\frac{3}{4}\) = (x2 + \(\frac{1}{2}\). x) +( \(\frac{1}{2}\).x + \(\frac{1}{4}\)) + \(\frac{3}{4}\) = x.(x + \(\frac{1}{2}\) ) + \(\frac{1}{2}\).(x + \(\frac{1}{2}\)) + \(\frac{3}{4}\)
= (x + \(\frac{1}{2}\) ). (x + \(\frac{1}{2}\) ) + \(\frac{3}{4}\) = (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\) 0 + \(\frac{3}{4}\)= \(\frac{3}{4}\) với mọi x
=> x2 + x + 1 = 0 không có nghiệm
ta có : p(x) = 0
x^3 - x+ 5 = 0
x^3 - x =-5
mà x^3 khác -5
=> vô nghiệm
ta có A=x(x+1)+(x+1)=(x+1)2+1 vì(x+1)2 >hoac =0 nen (x+1)2+1>0
hay A=(x+1)2+1>0
suy ra đa thức A vô nghiệm
`@` `\text {Ans}`
`\downarrow`
`P(x)=x^4 + 3x^2 + 13 = 0`
Vì \(\left\{{}\begin{matrix}x^4\ge0\text{ }\forall\text{ x}\\x^2\ge0\text{ }\forall\text{ x}\end{matrix}\right.\)
`=>`\(\left\{{}\begin{matrix}x^4\ge0\text{ }\forall\text{ x}\\3x^2\ge0\text{ }\forall\text{ x}\end{matrix}\right.\)
`=>`\(x^4+3x^2+13\ge13>0\text{ }\forall\text{ x}\)
Mà 13 \ne 0`
`=>` Đa thức `P(x)` vô nghiệm.
P(x) = x⁴ + 2 . x² . 3/2 + (3/2)² + 13 - (3/2)²
= (x² + 3/2)² + 43/4
Do (x² + 3/2)² ≥ 0 với mọi x
⇒ (x² + 3/2)² + 43/4 > 0 với mọi x
Vậy P(x) vô nghiệm