K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2023

3x-1 phần x2 -3x +1+x2-6x phần x2-3x+1 

21 tháng 9 2017

vcbxcvbcbxc

4 tháng 9 2016

Xét với mọi n > 2 , ta có \(\frac{n}{n+2}< \frac{n-1}{n}\) (vì \(n^2< n^2+n-2\))

Áp dụng : \(A=\frac{1}{3}.\frac{4}{6}.\frac{7}{9}.\frac{10}{12}...\frac{208}{210}< \frac{1}{3}.\frac{3}{4}.\frac{6}{7}.\frac{9}{10}...\frac{207}{208}\)

Suy ra : \(A^2< \frac{1.4.7.10...208}{3.6.9.12...210}.\frac{1.3.6.9...207}{3.4.7.10...208}=\frac{1}{210}.\frac{1}{3}=\frac{1}{630}< \frac{1}{625}=\left(\frac{1}{25}\right)^2\)

Do đó \(A< \frac{1}{25}\)

4 tháng 9 2016

hiểu j chết liền

=="

5 tháng 3 2018

Có:

\(\dfrac{n}{n+2}< \dfrac{n-1}{n}\)(Vì
\(n^2< n^2+n-2\forall n>2\))

Nên ta có

\(F=\dfrac{1}{3}.\dfrac{4}{6}....\dfrac{208}{201}\)

\(\Rightarrow F< \dfrac{1}{3}.\dfrac{3}{4}.\dfrac{6}{7}...\dfrac{207}{208}\)

\(\Rightarrow F^2< \dfrac{1.4.7...208}{3.6.9.12...210}.\dfrac{1.3.6.9...207}{3.4.7.10.208}\)

\(\Rightarrow F^2=\dfrac{1}{210}.\dfrac{1}{3}\)

\(\Rightarrow F^2=\dfrac{1}{630}< \left(\dfrac{1}{25}\right)^2\)

Vậy F\(< \dfrac{1}{25}\)

6 tháng 9 2016

đúng tick cho

Bài 1: 

1: =-5/24+16/27+3/4

=-5/24+18/24+16/27

=13/24+16/27

=117/216+128/216=245/216

2: =-1/3+1/3+6/7=6/7

3: \(=\dfrac{1}{2}-\dfrac{7}{12}+\dfrac{1}{2}=1-\dfrac{7}{12}=\dfrac{5}{12}\)

4: \(=-\dfrac{5}{8}+\dfrac{14}{25}-\dfrac{6}{10}=\dfrac{-125+112-120}{200}=\dfrac{-133}{200}\)

1: =72/90+65/90=137/90

2: =24/56-77/56=-53/56

3: =-7/10+4/5=1/10

4: =15/100-4/100=11/100

5: =4/6-5/6=-1/6

6: =10/40-15/40-76/40=-81/40

7: =-9/10+7/18

=-81/90+35/90=-46/90=-23/45

8: =27/90-55/90=-28/90=-14/45

9: =36/60-50/60-35/60=-49/60

10: =-4/9+5/6-3/8

=-32/72+60/72-27/72

=1/72

4 tháng 2 2017

-9-13-(-24)+11

4 tháng 2 2017

\(-9-13-\left(-24\right)+11\)

\(=\left(-9-13\right)+\left(24+11\right)\)

\(=-22+35\)

\(=13\)