Giải bất phương trình
3x\(^3\) - 5x\(^2\) - x - 2>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x-x\left(x-2\right)=-\left(x+1\right)^2\)
\(\Leftrightarrow3x-x^2+2x=-\left(x^2+2x+1\right)\)
\(\Leftrightarrow5x-x^2=-x^2-2x-1\)
\(\Leftrightarrow-x^2+x^2+5x+2x=-1\)
\(\Leftrightarrow7x=-1\)
\(\Leftrightarrow x=\left(-1\right)\div7\)
\(\Leftrightarrow x=-\dfrac{1}{7}\)
Ko bt đúng or sai :>
3x -x(x-2)= -(x+1)^2
<=>3x -x^2 +2x= -x^2-2x -1
<=> -x^2 +x^2 +5x +2x=-1
<=>7x= -1
<=>x= -1/7
Giải HPT:
\(\left\{{}\begin{matrix}3x-6y=1959\\x+7y=2019\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-6y=1959\\3x+21y=6057\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}27y=4098\\x+7y=2019\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\approx152\\x=955\end{matrix}\right.\)
Mik chỉ làm gần bằng đc thôi vì y là số thập phân.
1) \(A=\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{4+2\sqrt{3}}}{2}=\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}=\dfrac{\sqrt{3}+1}{2}\)
2) \(\left\{{}\begin{matrix}3x-6y=1959\\x+7y=2019\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x-6y=1959\\3x+21y=6057\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+7y=2019\\27x=4098\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8609}{9}\\y=\dfrac{1366}{9}\end{matrix}\right.\)
Lời giải:
b/
\(\frac{3x+5}{2x^2-5x+3}\geq 0\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} 3x+5\geq 0\\ 2x^2-5x+3>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x+5\leq 0\\ 2x^2-5x+3<0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq \frac{-5}{3}\\ x>\frac{3}{2}(\text{hoặc}) x< 1\end{matrix}\right.\\ \left\{\begin{matrix} x\leq \frac{-5}{3}\\ 1< x< \frac{3}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} x>\frac{3}{2}\\ \frac{-5}{3}\leq x< 1\end{matrix}\right.\ \)
c/
$2x^3+x+3>0$
$\Leftrightarrow 2x^2(x+1)-2x(x+1)+3(x+1)>0$
$\Leftrightarrow (x+1)(2x^2-2x+3)>0$
$\Leftrightarrow (x+1)[x^2+(x-1)^2+2]>0$
$\Leftrightarrow x+1>0$
$\Leftrightarrow x>-1$
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
=>3x^3-6x^2+x^2-2x+x-2>0
=>(x-2)(3x^2+x+1)>0
=>x-2>0
=>x>2
\(3x^3-5x^2-x-2>0\)
\(\Leftrightarrow3x^3-6x^2+x^2-2x+x-2>0\)
\(\Leftrightarrow3x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)>0\)
\(\Leftrightarrow\left(x-2\right)\left(3x^2+x+1\right)>0\)
Mặt khác: \(3x^2+x+1=2x^2+\left(x^2+x+1\right)\)
Ta lại có: \(x^2+x+1=x^2+2x\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(\Rightarrow3x^2+x+1>0\)
\(\Rightarrow x-2>0\)
\(\Leftrightarrow x>2\)
Vậy bpt có nghiệm là \(x>2\)