Một số a thuộc N khi chia cho 4 dư 3, chia cho 17 dư 9, chia cho 19 dư 13. Hỏi a chia cho 1292 dư bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đã cho là A.Ta có:
A = 4a + 3
= 17b + 9 (a,b,c thuộc N)
= 19c + 3
Mặt khác: A + 25 = 4a+3+25=4a+28=4(a+7)
=17b+9+25=17b+34=17(b+2)
=19c+13+25=19c+38=19(c+2)
Như vậy A+25 đồng thời chia hết cho 4,17,19.Mà (4;17;19)=1=>A+25 chia hết cho 1292.
=>A+25=1292k(k=1,2,3,....)=>A=1292k-25=1292k-1292+1267=1292(k-1)+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.
Bài 2:
Sửa đề: chia 23 dư 7
Vì a chia 17 dư 1 nên a-16 chia hết cho 17
Vì a chia 23 dư 7 nên a-16 chia hết cho 23
Vậy: a chia 391 dư 16
351 là sai rồi bạn. Bài này mình gặp rồi. Đáp án đúng la 1267
Cách làm
Gọi số đó là a
a= 4p+3 = 17m+9= 19n+13
a+25 =4p+28= 17m+34 =19n+38
a+25 chia hết cho 4, 17, 19
a+25 chia hết cho 4.17.19 =1292
Vậy a chia 1292 dư (1292-25) = 1267
gọi số đó là A : ta có :
A= 4p+3 = 17m+9= 19n+13
A+25 =4p+28= 17m+34 =19n+38
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19
vậy A+25 chia hết cho 4.17.19 =1292
A chia 1292 dư (1292-25) = 1267
:3
gọi số đó là A : ta có :
A= 4p+3 = 17m+9= 19n+13
A+25 =4p+28= 17m+34 =19n+38
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19
vậy A+25 chia hết cho 4.17.19 =1292
A chia 1292 dư (1292-25) = 1267
Theo bài ra ta có:
A=4a+3
=17b+9 (a,b,c \(\in N\))
=19c+13
Mặt khác: A+25 = 4a+3+25=4a+28=4(a+7)
=17b+9+25=17b+34=17(b+2)
=19c+13+25=19c+38=19(c+2)
Như vậy A+25 chia hết cho 4;17;19 (vì có chứa thừa số 4;17 và 19). Mà (4;17;19) = 1 \(\Rightarrow\)A+25 chia hết cho 1292
\(\Rightarrow\)A+25=1292k (\(k\in\)N*)
\(\Rightarrow\)A=1292k - 25 = 1292k - 1292 + 1267 = 1292(k-1)+1267
Do1267<1292 nên 1267 là số dư trong phép chia a cho 1292
Goi số đã cho là A ta có
A=4a+3
= 17b+9
=19c+13
măt khác A+25=4a+3+25=4a+28=4.(a+7)
=17b+9+25=17b+34=17(b+2)
=19c+13+25=19c+28=19.(c+2)
..................................................................................
K mk đi mk giải tiếp cho