biết đa thức f(x)=ax3+bx2+cx+d(với a khác 0) có hai nghiệm 1 và -1.Tìm nghiệm thứ ba của đa thức f(x)?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Biết đa thức f(x)=ax3+bx2+cx+d(với a khác 0) có 2 nghiệm 1 và-1. Tìm nghiệm thứ ba của đa thức f(x)?
Theo đề:
f(1)=a+b+c+d=0
f(-1)=-a+b-c+d=0
=>f(1)+f(-1)=2(b+d)=0 => b+d = 0 => b=-d (1)
f(1)-f(-1)=2(a+c)=0 => a+c=0 => a=-c(2)
Thay (1),(2) vào pt:
f(x)= -cx^3-dx^2+cx+d = cx(1 - x^2) + d(1 - x^2) = (cx + d)(1 - x)(1 + x) =0
=> x=1,x=-1, x= -d/c
Vậy nghiệm thứ 3 của f(x) là x= -d/c
Đặt \(g\left(x\right)=f\left(x\right)-10\) (bậc 4)
\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)=0\\g\left(2\right)=0\\g\left(3\right)=0\end{matrix}\right.\Leftrightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)\) (m là hằng số)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)-10\\ \Leftrightarrow f\left(9\right)=8\cdot7\cdot6\left(9-m\right)-10=336\left(9-m\right)-10\\ f\left(-5\right)=\left(-6\right)\left(-7\right)\left(-8\right)\left(-5-m\right)-10=336\left(m+5\right)-10\)
Vậy \(A=336\left(9-m\right)+336\left(m+5\right)-20=4684\)
Chúc bạn hok tốt <3
Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d\)
\(f\left(1\right)=0\Rightarrow a\times1^3+b\times1^2+c\times1+d=0\)
\(\Rightarrow a+b+c+d=0\)
\(f\left(-1\right)=0\Rightarrow a\times\left(-1\right)^3+b\times\left(-1\right)^2+c\left(-1\right)+d=0\)
\(\Rightarrow-a+b-c+d=0\)
\(\Rightarrow a+b+c+d=-a+b-c+d=0\)
\(\Rightarrow a+b+c+d+a-b+c=d=0\)
Ta có: \(f\left(0\right)=a\times0^3+b\times0^2+c\times0+d=d=0\)
Vậy x = 0 là nghiệm thứ ba của đa thức f(x).
Lời giải:
$P(0)=d$ lẻ
$P(1)=a+b+c+d$ lẻ, mà $d$ lẻ nên $a+b+c$ chẵn. Do đó 3 số này có thể nhận giá trị lẻ, lẻ, chẵn hoặc chẵn, chẵn, chẵn.
Giả sử $P(x)$ có nghiệm nguyên $m$. Khi đó:
$P(m)=am^3+bm^2+cm+d$
Nếu $m$ chẵn thì $am^3+bm^2+cm+d$ lẻ cho $d$ lẻ nên $P(m)\neq 0$
Nếu $m$ lẻ: Do $a,b,c$ nhận giá trị lẻ, chẵn, chẵn hoặc chẵn, chẵn, chẵn nên $am^3+bm^2+cm$ đều chẵn. Kéo theo $P(m)=am^3+bm^2+cm+d$ lẻ
$\Rightarrow P(m)\neq 0$
Tóm lại $P(m)\neq 0$
$\Rightarrow x=m$ không là nghiệm của $P(x)$. Do đó điều giả sử là sai.
Ta có đpcm.