cho a,b,c là các số nguyên dương đôi một phân biệt . Chứng minh rằng trong 3 số a5b - ab5 , b5c - bc5 , c5a - ca5 , có ít nhất một số chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có :
pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)
pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)
pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)
\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*)
Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)
\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)
trái với (*)
Vậy có ít nhất một phương trình có hai nghiệm phân biệt
cái kia chưa bt làm -_-
Gọi 5 số nguyên dương đã cho là K1, K2, K3, K4, K5 (phân biệt từng đôi một).Ta có :
K1 = 2^(a1).3^(b1)
K2 = 2^(a2).3^(b2)
K3 = 2^(a3).3^(b3)
K4 = 2^(a4).3^(b4)
K5 = 2^(a5).3^(b5)
(a1,a2,a3,... và b1,b2,b3,... đều là số tự nhiên)
Xét 4 tập hợp sau :
+ A là tập hợp các số có dạng 2^m.3^n (với m lẻ, n lẻ)
+ B là tập hợp các số có dạng 2^m.3^n (với m lẻ, n chẵn)
+ C là tập hợp các số có dạng 2^m.3^n (với m chẵn, n lẻ)
+ D là tập hợp các số có dạng 2^m.3^n (với m chẵn, n chẵn)
Rõ ràng trong 5 số K1, K2, K3, K4, K5 chắc chắn có ít nhất 2 số thuộc cùng 1 tập hợp ví dụ Ki và Kj
Ki = 2^(ai).3^(bi) và Kj = 2^(aj).3^(bj) ---> Ki.Kj = 2^(ai+aj).3^(bi+bj)
Vì Ki và Kj thuộc cùng 1 tập hợp ---> ai và aj cùng tính chẵn lẻ, bi và bj cùng tính chẵn lẻ ---> ai+aj và bi+bj đều chẵn ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) là số chính phương.
Cách 1:
Số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0.
(x;y) chỉ có thể (C;C); (L;L); (C;L); (L;C) vì có 5 số 4 dạng nên tồn tại 2 số cùng một dạng nên tích 2 số này là số chính phương.
Cách 2:
Ta dễ dàng chứng minh được trong 3 số tự nhiên bất kỳ luôn tìm được 2 số bất kỳ mà tổng của chúng chia hết cho 2.
Vì số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0 nên ta luôn chọn được 2 số mà tích của nó là số chính phương.
Gọi \(2021\)số đó là \(a_1,a_2,...,a_{2021}\).
Đặt \(t_1=a_1,t_2=a_1+a_2,...,t_n=a_1+a_2+...+a_n,...,t_{2021}=t_1+...+t_{2021}\).
\(t_1,...,t_{2021}\)có \(2021\)số nên có ít nhất \(2\)trong \(2021\)số trên có cùng số dư khi chia cho \(2020\).
Giả sử đó là \(t_m,t_n\)với \(m>n\).
Khi đó \(t_m-t_n\)chia hết cho \(2020\).
Ta có đpcm.