Cho ba số thực dương:a,b,c.Chứng minh:\(\dfrac{9a}{b+c}\)+\(\dfrac{25b}{c+a}\)+\(\dfrac{64c}{a+b}\)>30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Cho ba số thực a,b,c dương
Áp dụng BĐT Cauchy Schwarz, ta được:
\(VT=\left(a+b+c\right)\left(\frac{9}{bc}+\frac{25}{c+a}+\frac{64}{a+b}\right)-98\ge\left(a+b+c\right)\left(\frac{256}{2\left(a+b+c\right)}\right)-98=30\)
\(\Leftrightarrow VT\ge30\)
Dấu '=' xảy ra khi \(\frac{8}{a+b}=\frac{5}{c+a}=\frac{3}{b+c}\)
\(\Leftrightarrow\frac{8}{a+b}=\frac{8}{a+b+2c}\)
hay c=0(vô lý)
=> Dấu bằng không xảy ra
=>ĐPCM
Đặt \(\hept{\begin{cases}b+c=x>0\\c+a=y>0\\a+b=z>0\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{y+z-x}{2}\\b=\frac{z+x-y}{2}\\x=\frac{x+y-z}{2}\end{cases}}\)
Bất đẳng thức cần chứng minh tương đương:
\(\frac{9\left(y+z-x\right)}{2x}+\frac{25\left(z+x-y\right)}{2y}+\frac{64\left(x+y-z\right)}{2z}>30\)
Ta có: \(VP=\frac{9y}{2x}+\frac{9z}{2x}-\frac{9}{2}+\frac{25z}{2y}+\frac{25x}{2y}-\frac{9}{2}+\frac{32x}{z}+\frac{32y}{z}-32\)
\(=\left(\frac{9y}{2x}+\frac{25x}{2y}\right)+\left(\frac{9z}{2x}+\frac{32x}{z}\right)+\left(\frac{25z}{2y}+\frac{32y}{z}\right)-41\)
\(\ge2\cdot\frac{15}{2}+2\cdot12+2\cdot20-41=38>30\)
\(\Rightarrow\frac{9a}{b+c}+\frac{25b}{c+a}+\frac{64c}{a+b}>30\)
\(\Leftrightarrow\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}-2+\dfrac{c\left(2b-c\right)}{b\left(c+a\right)}-2+\dfrac{a\left(2c-a\right)}{c\left(a+b\right)}-2\le\dfrac{3}{2}-6\)
\(\Leftrightarrow\dfrac{b^2+2ac}{a\left(b+c\right)}+\dfrac{c^2+2ab}{b\left(c+a\right)}+\dfrac{a^2+2bc}{c\left(a+b\right)}\ge\dfrac{9}{2}\)
\(\Leftrightarrow\dfrac{b^2}{ab+ac}+\dfrac{c^2}{bc+ab}+\dfrac{a^2}{ac+bc}+\dfrac{2c^2}{bc+c^2}+\dfrac{2a^2}{ac+a^2}+\dfrac{2b^2}{ab+b^2}\ge\dfrac{9}{2}\)
Ta có:
\(VT\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}+\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
\(\Leftrightarrow VT\ge\left(a+b+c\right)^2\left(\dfrac{1}{2\left(ab+bc+ca\right)}+\dfrac{1}{a^2+b^2+c^2+ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2+ab+bc+ca}\right)\)
\(\Leftrightarrow VT\ge\dfrac{9\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)+2\left(a^2+b^2+c^2+ab+bc+ca\right)}\)
\(\Leftrightarrow VT\ge\dfrac{9\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=\dfrac{9}{2}\)
Thử với \(a=b=c=0.1\), BĐT trở thành \(\dfrac{1}{10}\ge1\Rightarrow\) đề sai