Tìm nghiệm của đa thức sau:
B(x)=x2+x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-2=0\Leftrightarrow x^2-\left(\sqrt{2}\right)^2=0\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(S=\left\{-\sqrt{2};\sqrt{2}\right\}\)
\(b,x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{0;2\right\}\)
\(c,x^2-2x=0\Leftrightarrow x\left(x-2\right)\) phương trình như câu b,
\(d,x\left(x^2+1\right)\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(voli\right)\end{matrix}\right.\)( voli là vô lí )
Vậy \(S=\left\{0\right\}\)
a,x2−2=0⇔x2−(2)2=0⇔(x−2)(x+2)=0⇔[x=2x=−2
Vậy �={−2;2}S={−2;2}
�,�(�−2)=0⇔[�=0�=2b,x(x−2)=0⇔[x=0x=2
Vậy �={0;2}S={0;2}
�,�2−2�=0⇔�(�−2)c,x2−2x=0⇔x(x−2) phương trình như câu b,
�,�(�2+1)⇔[�=0�2+1=0⇔[�=0�2=−1(����)d,x(x2+1)⇔[x=0x2+1=0⇔[x=0x2=−1(voli)( voli là vô lí )
Vậy �={0}S={0}
a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán
b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm
c. thì.... tớ ko biết
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
a) x2-x-6 =0
x2-3x+2x-6=0
(x2-3x)+(2x-6)=0
x(x-3)+2(x-3)=0
(x+2)(x-3)=0
=>x+2=0 hoặc x-3= 0
x = -2 x= 3
vậy x = -2 ,x= 3 là nghiệm của đa thức
b) 3x2+11x+6=0
3x2+9x+2x +6=0
3x(x+3)+2(x +3)=0
(3x+2)(x+3)=0
=> 3x+2=0 hoặc x+3=0
x = -2/3 x = -3
vậy x = -2/3 ,x = -3 là nghiệm của đa thức
Ta có: x2 – x = 0 ⇔ x(x – 1) = 0 ⇔ x = 0 hoặc x – 1 = 0
⇔ x = 0 hoặc x = 1
Vậy x = 0 và x = 1 là các nghiệm của đa thức x2 – x
a)x2-4=0
x2=4
x=2 và -2
Vậy: Nghiệm pt trên x={2;-2}
b) x2+9=0
x2=-9
=> PT vô nghiệm \(\left(x^2\ge0\right)\)
c) \(\left(x-3\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\2x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{7}{2}\end{cases}}}\)
Vậy:.........
d) Đề ko rõ lắm
#H
Ta có: (x – 1)(x2 + 1) = 0
Vì x2 ≥ 0 với mọi giá trị của x ∈ R nên:
x2 + 1 > 0 với mọi x ∈ R
Suy ra: (x – 1)(x2 + 1) = 0 ⇔ x – 1 = 0 ⇔ x = 1
Vậy x = 1 là nghiệm của đa thức (x – 1)(x2 + 1)
B(x) = x2+x
Đặt B(x) = 0
=> x2+x=0
x.x + x = 0
x(x+1)=0
TH1: x = 0
TH2: x+1 = 0
x = -1
Vậy nghiệm của B(x) là x=-1