K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

ta chứng minh VT pt nhỏ hơn \(\sqrt{10}\) nên pt vô nghiệm.

thật vậy.

Áp dụng BĐT Cauchy ta có \(x^2+1\ge2\sqrt{x^2+1}\)

                                                   \(x^2-2x+5\ge2\sqrt{x^2-2x+5}\)

nên VT \(\le\frac{x^2+1+x^2-2x+5}{2}\)

VT \(\le x^2-x+3\le\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\le\frac{11}{4}< \sqrt{10}\)

Vậy PT vô nghiệm.

15 tháng 5 2017

ngược dấu kìa :

ÁP dụng Minkowski:\(VT=\sqrt{x^2+1}+\sqrt{\left(1-x\right)^2+4}\ge\sqrt{\left(x+1-x\right)^2+\left(1+2\right)^2}=\sqrt{10}\)

dấu = xảy ra khi \(\frac{x}{1-x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

8) ĐKXĐ: $-2\leq x\leq 1$

PT $\Leftrightarrow (2x+4)-4\sqrt{2x+4}+4+[(1-x)-2\sqrt{1-x}+1]=0$

$\Leftrightarrow (\sqrt{2x+4}-2)^2+(\sqrt{1-x}-1)^2=0$

Dễ thấy: $(\sqrt{2x+4}-2)^2; (\sqrt{1-x}-1)^2\geq 0$ với mọi $x\in [-2;1]$ nên để tổng của chúng bằng $0$ thì:

$(\sqrt{2x+4}-2)^2=(\sqrt{1-x}-1)^2=0$

$\Leftrightarrow \sqrt{2x+4}=2; \sqrt{1-x}-1=0$

$\Leftrightarrow x=0$ (thỏa mãn)

Vậy.....

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

7)

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow x^2+[(x+1)-2\sqrt{x+1}+1]=0$

$\Leftrightarrow x^2+(\sqrt{x+1}-1)^2=0$

Ta thấy:

$x^2\geq 0; (\sqrt{x+1}-1)^2\geq 0$ với mọi $x\geq -1$

Do đó để tổng của chúng bằng $0$ thì $x^2=(\sqrt{x+1}-1)^2=0$

$\Leftrightarrow x=0$ (thỏa mãn)

Vậy.......

18 tháng 3 2019
https://i.imgur.com/B9pl8gm.jpg
24 tháng 9 2021

1) \(ĐK:x\in R\)

2) \(ĐK:x< 0\)

3) \(ĐK:x\in\varnothing\)

4) \(=\sqrt{\left(x+1\right)^2+2}\) 

\(ĐK:x\in R\)

5) \(=\sqrt{-\left(a-4\right)^2}\)

\(ĐK:x\in\varnothing\)

 

9 tháng 8 2017

1. \(x^4-x^2+3x+5=2\sqrt{x+1}\) ĐK: \(x\ge-1\)

\(\Leftrightarrow\left(x^4-x^2+2x+2\right)+\left(x+1-2\sqrt{x+1}+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2-2x+2\right)+\left(\sqrt{x}-1\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2\left[\left(\sqrt{x}+1\right)^2\left(x^2-2x+2\right)+1\right]=0\)

Dễ thấy \(\left(\sqrt{x}+1\right)^2\left(x^2-2x+2\right)+1>0\)

Vậy x =1

3. ĐK: \(x\ge-2\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x+5}\ge0\\b=\sqrt{x+2}\ge0\end{matrix}\right.\)

pt trên được viết lại thành

\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=\sqrt{x+2}\\\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

9 tháng 8 2017

Phương Thảo bn xem thử đề câu 2 có phải là

\(\sqrt{x^2+x}+\sqrt{x-x^2}=x+1\)??????

1 tháng 7 2019

tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,

Akai Haruma, @Nguyễn Việt Lâm

giúp mk vs! ngày mai phải nộp r

18 tháng 6 2019

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

Bạn đăng từng câu 1 nhé

22 tháng 7 2023

giúp mik câu 1 với 2 nhé