Giải hộ mình câu này với : \(\frac{12}{x}=\frac{12}{x+2}+1\) (X>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{3}+\frac{x-1}{5}+\frac{x-1}{7}+....+\frac{x-1}{99}=0\)
\(\left(x-1\right).\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+.....+\frac{1}{99}\right)=0\)
Vì \(\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+.....+\frac{1}{99}\right)>0\)
\(\Rightarrow x-1=0\)
=> x = 1
a) \(4\sqrt{x}+\frac{2}{\sqrt{x}}< 2x+\frac{1}{2x}+2\)
hay \(2\sqrt{x}+\frac{1}{\sqrt{x}}< x+\frac{1}{4x}+1\)
\(\Leftrightarrow0< x+\frac{1}{4x}+1-2\sqrt{x}-\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow0< \left(\sqrt{x}\right)^2-2\sqrt{x}-2\sqrt{x}\cdot1+1+\frac{1}{\left(2\sqrt{x}\right)^2}-2\cdot\frac{1}{2\sqrt{x}}\)
\(\Leftrightarrow1< \left(\sqrt{x}-1\right)^2+\left(\frac{1}{2\sqrt{x}}-1\right)^2\)
\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}>1\\2\sqrt{x}>1\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>\frac{1}{4}\end{cases}\Rightarrow}x>1}\)
b) \(\frac{1}{1-x^2}>\frac{3}{\sqrt{1-x^2}}-1\left(1\right)\left(ĐK:-1< x< 1\right)\)
Ta có (1) <=> \(\frac{1}{1-x^2}-1-\frac{3x}{\sqrt{1-x^2}}+2>0\)\(\Leftrightarrow\frac{x^2}{1-x^2}-\frac{3x}{\sqrt{1-x^2}}+2>0\)
Đặt \(t=\frac{x}{\sqrt{1-x^2}}\)ta được
\(t^2-3t+2>0\Leftrightarrow\orbr{\begin{cases}\frac{x}{\sqrt{1-x^2}}< 1\\\frac{x}{\sqrt{1-x^2}}>2\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{1-x^2}>x\left(a\right)\\2\sqrt{1-x^2}< x\left(b\right)\end{cases}}}\)
(a) <=> \(\hept{\begin{cases}x< 0\\1-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\1-x^2>x^2\end{cases}}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(\hept{\begin{cases}x\ge0\\x^2< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(0\le x\le\frac{\sqrt{2}}{2}\Leftrightarrow-1< x< \frac{\sqrt{2}}{2}\)
(b) \(\Leftrightarrow\hept{\begin{cases}1-x^2>0\\x>0\\4\left(1-x^2\right)< x^2\end{cases}\Leftrightarrow\hept{\begin{cases}0< x< 1\\x^2>\frac{4}{5}\end{cases}\Leftrightarrow}\frac{2}{\sqrt{5}}< x< 1}\)
\(\frac{2}{3}x+\frac{1}{2}x=\frac{15}{12}\)
\(x.\left(\frac{2}{3}+\frac{1}{2}\right)=\frac{5}{4}\)
\(x.\left(\frac{4}{6}+\frac{3}{6}\right)=\frac{5}{4}\)
\(x.\frac{7}{6}=\frac{5}{4}\)
\(x=\frac{5}{4}:\frac{7}{6}\)
\(x=\frac{30}{28}\)
\(x=\frac{15}{14}\)
đặt x ra ngoài,trong ngoặc có cái chi cái chi ó,rùi tính!
eh eh eh kb eh
kb eh!!!=)
\(A=\frac{y}{x}.\sqrt{\frac{x^2}{\left(y^2\right)^2}}=\frac{y}{x}.\frac{x}{y^2}=\frac{1}{y}< 0.\)
Đơn giản hơn vì:
\(\sqrt{\frac{x^2}{y^4}}>0\); \(\frac{y}{x}< 0\)=> \(A< 0.\)
a)\(-\frac{2}{5}+\frac{2}{3}x+\frac{1}{6}x=-\frac{4}{5}\Leftrightarrow\frac{5}{6}x=-\frac{2}{5}\Leftrightarrow x=-\frac{12}{25}\)
Vậy nghiệm là x = -12/25
b)\(\frac{3}{2}x-\frac{2}{5}-\frac{2}{3}x=-\frac{4}{15}\Leftrightarrow\frac{5}{6}x=\frac{2}{15}\Leftrightarrow x=\frac{4}{25}\)
Vậy nghiệm là x = 4/25
c)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\right)\)\(\Leftrightarrow x=-1\)
Vậy nghiệm là x = -1
Tập xác định của phương trình
2
Rút gọn thừa số chung
3
Biệt thức
4
Biệt thức
5
Nghiệm
Tiếp tục:\(-A=\frac{x^3+y^3+z^3}{2xyz}\)
thay(1) vào A ta có
\(-A=\frac{y^3+z^3-\left(y+z\right)^3}{2xyz}=\frac{y^3+z^3-y^3-z^3-3yz\left(y+z\right)}{2xyz}\)
\(-A=\frac{3xyz}{2xyz}=\frac{3}{2}\Rightarrow A=\frac{-3}{2}\)
P/s tham khảo bài mình nhé nhớ
ta có:\(x+y+z=0\) \(\Rightarrow x=-\left(y+z\right)\)
\(\Rightarrow x^3=-\left(y+z\right)^3\left(1\right)\)\(;x^2=\left(y+z\right)^2\)
\(\Rightarrow y^2+z^2-x^2=-2yz\)
CMTT:\(z^2+x^2-y^2=-2xz;x^2+y^2-z^2=-2xy\)
thay vào A ta có:
\(A=\frac{-x^2}{2yz}+\frac{-y^2}{2xz}+\frac{-z^2}{2xy}\)
tích hộ mk
là 12 phần 12 = 12 phần 10+2=12 +1 > 0=2