Cho \(a,b,c,d\in Z\) thỏa mãn \(a^3+b^3=2\left(c^3-8d^3\right)\) . Chứng minh rằng \(a+b+c+d\)chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài bạn làm rất chuẩn em tham khảo nhé! ( chỉ cần nhấn vào link màu xanh ) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath
Ta có a3 + b3 = 2(c3 - 8d3)
<=> a3 + b3 = 2c3 - 16d3
<=> a3 + b3 + c3 + d3 = 3(c3 - 5d3) \(⋮3\)(1)
Xét hiệu a3 + b3 + c3 + d3 - (a + b + c + d)
= (a3 - a) + (b3 - b) + (c3 - c) + (d3 - d)
= (a - 1)a(a + 1) + (b - 1)b(b + 1) + (d - 1)d(d + 1) \(⋮3\) (tổng các tích 3 số nguyên liên tiếp)
=> a3 + b3 + c3 + d3 - (a + b + c + d) \(⋮\)3 (2)
Từ (1) và (2) => a + b + c + d \(⋮3\)
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
a) \(a,b>0\Rightarrow a^3-b^3< a^3+b^3\)
Mà \(a^3+b^3=a-b\)
\(\Rightarrow a^3-b^3< a-b\)
\(\Rightarrow\frac{a^3-b^3}{a-b}< 1\)
\(\Leftrightarrow\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}< 1\)
\(\Leftrightarrow a^2+ab+b^2< 1\)
\(\Rightarrow a^2+b^2< 0\)(Vì a,b > 0)
b) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath
\(a^3+b^3=2\left(c^3-8d^3\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=2c^3-16d^3+c^3+d^3\)
\(=3c^3-15d^3=3\left(c^3-5d^3\right)⋮3\)
\(\Rightarrow a^3+b^3+c^3+d^3⋮3\)(1)
Ta có: \(a^3+b^3+c^3+d^3-a-b-c-d\)
\(=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)
\(+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)\)
Tích 3 số nguyên liên tiếp chia hết cho 3 nên
\(\left(a-1\right)a\left(a+1\right)⋮3\)
\(\left(b-1\right)b\left(b+1\right)⋮3\)
\(\left(c-1\right)c\left(c+1\right)⋮3\)
\(\left(d-1\right)d\left(d+1\right)⋮3\)
\(\Rightarrow\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)
\(+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)⋮3\)
hay \(a^3+b^3+c^3+d^3-a-b-c-d⋮3\)(2)
Từ (1) và (2) suy ra \(a+b+c+d⋮3\left(đpcm\right)\)
-Ta có: a3-a= a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số nguyên liên tiếp nên a.(a-1).(a+1) chia hết cho 3.
=> a3-a chia hết cho 3.
-Chứng minh tương tự ta có b^3-b chia hết cho 3 và c^3-c chia hết cho 3 với mọi b,c thuộc Z.
=> a3+b3+c3 -(a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc Z.
=> nếu a3+b3+c3 chia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.
Vậy đpcm.chúc bn hok tốt
Ta có : \(x+y=\sqrt{\left(x+y\right)^2}\le\frac{\left(x+y\right)^2+1}{2}\)
z = \(\sqrt{z^2}\le\frac{z^2+1}{2}\)
=> x + y + z \(\le\frac{\left(x+y\right)^2+1+z^2+1}{2}=\frac{ }{ }\)
\(x+y=\sqrt{\left(x+y\right)^2}\le\frac{\left(x+y\right)^2+1}{2}\)
\(z=\sqrt{z^2}\le\frac{z^2+1}{2}\)
\(\Rightarrow x+y+z\le\frac{\left(x+y\right)^2+1+z^2+1}{2}=2+xy\)