K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

a) 

vì ABCD hình chữ nhật nên ta có AB//CD 

=> góc ABH= góc BDC ( so le trong, AB//CD)

 xét tam giác AHB,BCD có 

góc A= góc C =90

góc ABH=BDC(cmt)

=> tam giác AHB đồng dạng với tam giác CDB (gg)

b)

vì ABCD hcn nên 

AB=CD=12

BC=AD=9

AD Đlí pytado cho tam giác vuông CDB có 

BD2=BC2+DC2

BD2=81+144

BD=15cm

theo câu a) ta có

AH/AB=BC/BD

=> AH= AB.BC chia BD

AH= 12.9 chia 15

AH= 7.2CM

C)

BD

12 tháng 5 2021

a) Xét tam giác AHB và tam giác BCD ta có:

AHB = BCD (=90^0)

ABH = BDC (AB // CD và 2 góc slt)

=> Tam giác AHB đồng dạng với tam giác BCD (G-G)

b) Tam giác BCD vuonng tại C. Áp dụng Pitago ta tính được BD = 15cm

Tam giác AHB đồng dạng với tam giác BCD (G-G)

\(\Rightarrow\dfrac{AH}{BC}=\dfrac{AB}{BD}\Rightarrow\dfrac{AH}{9}=\dfrac{12}{15}\)

=> AH = 7,2 cm

c) Tam giác AHB vuông tại H. Áp dụng Pitago ta tính được  HB = 9,6cm

\(S_{AHB}=\dfrac{1}{2}AH.HB=\dfrac{1}{2}.7,2.9,6=34,56\left(cm^2\right)\)

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)

Do đó: ΔAHB~ΔBCD

b: ta có: ΔABD vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD^2=12^2+5^2=169\)

=>\(BD=\sqrt{169}=13\left(cm\right)\)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH\cdot BD=AB\cdot AD\)

=>\(AH\cdot13=12\cdot5=60\)

=>\(AH=\dfrac{60}{13}\left(cm\right)\)

c: Xét ΔBCD có CE là phân giác

nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(1)

Xét ΔHAB vuông tại H và ΔADB vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔHAB~ΔADB

=>\(\dfrac{HA}{AD}=\dfrac{HB}{AB}\)

=>\(\dfrac{HA}{HB}=\dfrac{AD}{AB}=\dfrac{BC}{CD}\left(2\right)\)

Từ (1),(2) suy ra \(\dfrac{EB}{ED}=\dfrac{HA}{HB}\)

=>\(EB\cdot HB=HA\cdot ED\)

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

góc ABH=góc BDC

=>ΔAHB đồng dạng với ΔBCD

b: BD=căn 9^2+12^2=15cm

AH=9*12/15=108/15=7,2cm
c: Xét ΔHAD có HN/HA=HP/HD

nên NP//AD và NP=AD/2

=>NP//BC và NP=BC/2

=>NP//BM và NP=BM

=>BNPM là hình bình hành

a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có 

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//DC)

Do đó: ΔAHB\(\sim\)ΔBCD(g-g)

b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)

nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)

Ta có: ΔAHB\(\sim\)ΔBCD(cmt)

nên \(\dfrac{AH}{BC}=\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AH}{HB}=\dfrac{BC}{CD}\)(2)

Từ (1) và (2) suy ra \(\dfrac{AH}{HB}=\dfrac{EB}{ED}\)

hay \(AH\cdot ED=HB\cdot EB\)(đpcm)

2 tháng 8 2021

a, Xét tam giác AHB và tam giác BCD, có:

AHB = BCD = 90o

B1 = B2

=> Tam giác AHB ~ tam giác BCD (g_g)

b, Theo ý a, ta có:

Tam giác AHB ~ tam giác BCD => AH/BC = AB/BD

=> AH = AB.BC/BD = 12.9/15 = 7,2 cm

=> AH = 7,2 cm

c, Vì BD là đường chéo hình chữ nhật ABCD nên B1 = B2 = D1 = D2

Xét tam giác AHB và tam giác DHA, có

AHB = DHA = 90o

D1 = B1 (cmt)

=> Tam giác AHB ~ tam giác DHA (g_g)

=> AH/BH = DH/AH (dpcm)

a) Xét ΔAHB vuông tại H và ΔDAB vuông tại A có

\(\widehat{ABH}\) chung

Do đó: ΔAHB∼ΔDAB(g-g)

mik chỉ cần mng lm phần C thui ạ

 

5 tháng 3 2023

a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có 

góc ABH = góc BDC(hai góc so le trong, AB//DC)

góc BCD = góc AHB(hai góc vuông)

Do đó: ΔAHBΔBCD(g-g)

b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)

nên \(\dfrac{EB}{ED}\)=\(\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)

Ta có: ΔAHB∼∼ΔBCD(cmt)

nên\(\dfrac{AH}{BC}\)=\(\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay\(\dfrac{AH}{BH}\)=\(\dfrac{BC}{CD}\)(2)

Từ (1) và (2) suy ra \(\dfrac{AH}{BH}\)=\(\dfrac{EB}{ED}\)

hay AH⋅ED=HB⋅EB(đpcm)