Cho tam giác ABC cân tại A ( Â nhọn) có 2 đường cao BD và CE cắt nhau tại H
a) Chứng minh : AH là tia phân giác của Â
b) Chứng minh : 2 tam giác BEC và CEB bằng nhau
c) Gọi M là Trung Điểm BC. Chứng minh 3 điểm A, H , M thẳng hàng
Vẽ hình và giải dùm mình nha :v
Hình bạn tự vẽ nhé !
a) Vì \(BD;CE\)là hai đường cao mà \(BD;CE\)cắt nhau tại \(H\)
\(\Rightarrow H\)là trực tâm của \(\Delta ABC\)
\(\Rightarrow AH\)là đường cao thứ ba mà \(\Delta ABC\left(AB=AC\right)\)nên \(AH\)đồng thời là tia phân giác của \(\widehat{BAC}\)(1)
b) Xét \(\Delta BEC;\Delta CDB\)có :
\(\widehat{BEC}=\widehat{CDB}=90^o\left(gt\right)\)
\(\widehat{CBE}=\widehat{BCD}\)(vì tam giác ABC cân A)\(\)
\(BC\)cạnh huyền chung
Từ 3 điều trên \(\Rightarrow\Delta BEC=\Delta CDB\left(CH-GN\right)\)
c) Vì \(M\)là trung điểm của \(BC\)\(\Rightarrow BM=CM\)\(\Rightarrow AM\)là đường trung tuyến đồng thời là đường phân
giác của \(\widehat{BAC}\)(2)
Từ (1) và (2)\(\Rightarrow AH;AM\)là tia phân giác của \(\widehat{BAC}\)\(\Rightarrow A;H;M\)thẳng hàng
k cho mình nhé !
mk cũng cần câu trả lời gấp lắm