tính
A=1+3+32+...+3100
Ai nhanh mình sẽ tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=1+3^1+3^2+...+3^{100}\)
\(\Rightarrow3F=3+3^2+...+3^{101}\)
\(\Rightarrow2F=3F-F=3+3^2+...+3^{101}-1-3^1-...-3^{100}=3^{101}-1\)
\(\Rightarrow F=\dfrac{3^{101}-1}{2}\)
\(3\cdot F=3^1+3^2+...+3^{101}\)
hay \(F=\dfrac{3^{101}-1}{2}\)
\(71\cdot64+32\cdot\left(-7\right)-13\cdot32\)
\(=32\cdot2\cdot71+32\cdot\left(-7\right)+32\cdot\left(-13\right)\)
\(=32\left(142-7-13\right)\)
\(=32\cdot122=3904\)
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
= 32/64 + 16/64 + 8/64 + 4/64 + 2/64 + 1/64
= 63/64
Chúc bạn học tốt nha!^-^
A=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
A=\(\frac{1.2.3.4...2015}{2.3.4...2016}=\frac{1}{2016}\)
Hok tốt
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2015}\right).\left(1-\frac{1}{2016}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
= \(\frac{1}{2016}\)
Vậy ...
a , tổng các phân số đã cho là : 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 = 79/64
b, \(\frac{79}{64}\)và \(\frac{2017}{2018}\)= \(\frac{159422}{129152}\)và \(\frac{129088}{129152}\)= \(\frac{159422}{129152}\)> \(\frac{129088}{129152}\)
=> \(\frac{79}{64}\)> \(\frac{2017}{2018}\)
a) 1/2 + 1/4 + 1/8 + 1/ 16 + 1/32 + 1/64
=32/64 + 16/64 + 8/64 + 4/64 + 2/64
=32+16+8+4+2/64 = 66/64= 33/32
b) ta có 33/32 > 1 và 2017/2018<1
nên 33/32 > 2017/2018
thánh ơi toán này của lớp 6????