(x+1/2x3)+(X+1/3x4)+(X+1/4x5)+(X+1/5x6)=25/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{6}-\dfrac{1}{7}=\dfrac{1}{2}-\dfrac{1}{7}=\dfrac{5}{14}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{20}-\dfrac{1}{21}=\dfrac{21-2}{42}=\dfrac{19}{42}\)
Lời giải:
Gọi biểu thức số 1 là A và số 2 là B
\(A=\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
B tương tự A:
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{20}-\frac{1}{21}\)
\(=\frac{1}{2}-\frac{1}{21}=\frac{19}{42}\)
1/1x2 + 1/2x3 + 1/3x4 +1/4x5 +1/5x6
= 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6
= 1 - 1/6 = 5/6
Ta có : 1/2.3+1/3.4+1/4.5+1/5.6
=1/2-1/3+1/3-1/4+….+1/5-1/6
=1/2-1/6
=2/6=1/3
\(\frac{1}{2x3}\) + \(\frac{1}{3x4}\) + \(\frac{1}{4x5}\) + \(\frac{1}{5x6}\)
=\(\frac{1}{2}\) -\(\frac{1}{3}\) +\(\frac{1}{3}\) -\(\frac{1}{4}\) +\(\frac{1}{4}\) -\(\frac{1}{5}\) +\(\frac{1}{5}\) -\(\frac{1}{6}\)
=\(\frac{1}{2}\)-\(\frac{1}{6}\) =\(\frac{1}{3}\)
k cho mình nha
Bài nào khó lắm thì mới hỏi thôi chứ bài này dễ mà bạn tự vận động não đi
\(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{11\cdot12}=x\)
\(\Leftrightarrow x=\dfrac{1}{3}-\dfrac{1}{12}=\dfrac{4}{12}-\dfrac{1}{12}=\dfrac{1}{4}\)
1/3x4 + 1/4x5 + 1/5x6 +...+ 1/97x 98 + 1/98x99 + x =1
=> 1/3-1/4+1/4-1/5+1/5-1/6+....+1/97-1/98 + 1/98-1/99 +x = 1
=> 1/3 - 1/99 +x=1
=> 32/99+x=1
=> x= 1-32/99
=> x = 67/99
\(\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{20\times21}=\dfrac{x}{14}\)
\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{20}-\dfrac{1}{21}=\dfrac{x}{14}\)
\(\dfrac{1}{3}-\dfrac{1}{21}=\dfrac{x}{14}\)
\(\dfrac{7}{21}-\dfrac{1}{21}=\dfrac{x}{14}\)
\(\dfrac{6}{21}=\dfrac{x}{14}\)
\(\Rightarrow x.21=6.14\)
\(x.21=84\)
\(x=84:21\)
\(x=4\)
Vậy x = 4
1/3x4 + 1/4x5 + 1/5x6 + .. + 1/20x21 = x/14
1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + .. + 1/20 - 1/21 = x/14
1/3 - 1/21 = x/14
7/21 - 1/21 = x/14
6/21 = x/14
x . 21 = 6 x 14
x x 21 = 84
x = 84 : 21
x = 4
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{1}{2}-\dfrac{1}{6}=\dfrac{4}{12}=\dfrac{1}{3}\)
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}=\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)
\(\left(x+\dfrac{1}{2\times3}\right)+\left(x+\dfrac{1}{3\times4}\right)+\left(x+\dfrac{1}{4\times5}\right)+\left(x+\dfrac{1}{5\times6}\right)=\dfrac{25}{3}\)
\(x+\dfrac{1}{2\times3}+x+\dfrac{1}{3\times4}+x+\dfrac{1}{4\times5}+x+\dfrac{1}{5\times6}=\dfrac{25}{3}\)
\(x\times4+\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}\right)=\dfrac{25}{3}\)
\(x\times4+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)=\dfrac{25}{3}\)
\(x\times4+\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=\dfrac{25}{3}\)
\(x\times4+\dfrac{4}{12}=\dfrac{25}{3}\)
\(x\times4=\dfrac{25}{3}-\dfrac{4}{12}\)
\(x\times4=\dfrac{25}{3}-\dfrac{1}{3}\)
\(x\times4=\dfrac{24}{3}\)
\(x\times4=8\)
\(x=8\div4\)
\(x=2\)
:))