Cho tam giác ABC, đường cao AH
Chứng minh AB.AC \(\ge\) AH.BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = A B C 1 2 A H . B C = 1 2 A B . A C
Þ AH.BC = AB.AC (ĐPCM)
Ta có : \(AH.BC=AB.AC\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\left(1\right)\)
Xét \(\Delta AHC\)và \(\Delta ABC\)có :
\(\frac{AH}{AB}=\frac{AC}{BC}\left[theo\left(1\right)\right]\)
\(\widehat{C}\)chung
\(\Rightarrow\Delta AHC~\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\widehat{A}=\widehat{H}=90^o\)( hai góc tương ứng )
Hay \(\Delta ABC\)vuông tại A ( đpcm )
a: Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
b: Xét ΔABD và ΔCBE có
\(\widehat{ABD}=\widehat{CBE}\)(BE là phân giác của góc ABC)
\(\widehat{BAD}=\widehat{BCE}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔABD~ΔCBE
Lời giải:
a. Xét tam giác $ABC$ và $HBA$ có:
$\widehat{B}$ chung
$\widehat{BAC}=\widehat{BHA}=90^0$
$\Rightarrow \triangle ABC\sim \triangle HBA$ (g.g)
Ta có:
$AB.AC=AH.BC$ (cùng bằng 2 lần diện tích tam giác $ABC$)
b.
Xét tam giác $BHA$ và $AHC$ có:
$\widehat{BHA}=\widehat{AHC}=90^0$
$\widehat{HBA}=\widehat{HAC}$ (cùng phụ góc $\widehat{BAH}$)
$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)
$\Rightarrow \frac{BH}{HA}=\frac{AH}{HC}$
$\Rightarrow AH^2=BH.CH$.
Áp dụng các hệ thức lượng trong tam giác vuông ,ta được:
\(AH^2=BH.CH\)
\(AH.BC=AB.AC\)
Lớp 8 chưa học lượng giác mà??
a) Xét tam giác AHC vuông tại H và tam giác AHB vuông tại H
Áp dụng định lý Pytago cho cả 2 tam giác:
Tam giác AHC: AH^2= AC^2 - CH^2 (1)
TAM GIÁC AHB: AH^2 =AB^2 - BH^2 (2)
(1) (2) Suy ra 2AH^2 = AB^2 + AC^2 - CH^2 - BH^2
2AH^2 = BC^2 - CH^2 - BH^2
2AH^2 = (BH+CH)^2 - CH^2 - BH^2
2AH^2 = 2BH.CH
AH^2 = BH.CH
b) Xét tam giác AHB và tam giác CAB:
H^ = A^ = 90 độ
B^ chung
2 tam giác AHB và tam giác CAB đồng dạng trường hợp (g-g)
Suy ra AH/CA = HB/AB= AB/BC
Vậy AH.BC = AB.AC
a: Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=15^2+20^2=625\)
=>\(BC=\sqrt{625}=25\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot25=15\cdot20=300\)
=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(3\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(4\right)\)
Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)
=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Do đó: ΔAMN đồng dạng với ΔACB
c: Ta có: ΔABC vuông tại A
mà AK là đường trung tuyến
nên AK=KC=KB
Ta có: KA=KC
=>ΔKAC cân tại K
=>\(\widehat{KAC}=\widehat{KCA}\)
Ta có: ΔAMN đồng dạng với ΔACB
=>\(\widehat{ANM}=\widehat{ABC}\)
Ta có: \(\widehat{KAC}+\widehat{ANM}\)
\(=\widehat{ABC}+\widehat{KCA}=90^0\)
=>AK\(\perp\)MN tại I
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)
=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)
=>BH=225/25=9(cm); CH=400/25=16(cm)
Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\)
=>\(AM\cdot15=12^2\)=144
=>AM=144/15=9,6(cm)
Ta có: AMHN là hình chữ nhật
=>AH=MN
mà AH=12cm
nênMN=12cm
Ta có: ΔANM vuông tại A
=>\(AN^2+AM^2=NM^2\)
=>\(AN^2+9,6^2=12^2\)
=>AN=7,2(cm)
Xét ΔIMA vuông tại I và ΔAMN vuông tại A có
\(\widehat{IMA}\) chung
Do đó: ΔIMA đồng dạng với ΔAMN
=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)
=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)
Giải: a) Ta có : \(S_{\Delta ABC}\)= \(\frac{AH.BC}{2}\) (1)
\(S_{\Delta ABC}\)= \(\frac{AB.AC}{2}\) (2)
Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)
b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)
Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625
=> BC = 25
Ta có: AH.BC = AB.AC (cmt)
hay AH. 25 = 15.20
=> AH.25 = 300
=> AH = 300 : 25
=> AH = 12
c) chưa hc
Lời giải:
1.
Xét tam giác $BHA$ và $BAC$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)
$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}\Rightarrow BA^2=BH.BC$
Tương tự, ta cũng cm được: $\triangle CHA\sim \triangle CAB$ (g.g)
$\Rightarrow CA^2=CH.CB$
Do đó:
$CA^2+CB^2=BH.BC+CH.CB=BC(BH+CH)=BC.BC=BC^2$
(đpcm)
b. Xét tam giác $BHA$ và $AHC$ có:
$\widehat{BHA}=\widehat{AHC}=90^0$
$\widehat{HBA}=\widehat{HAC}$ (cùng phụ $\widehat{BAH}$)
$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)
$\Rightarrow \frac{BH}{AH}=\frac{HA}{HC}$
$\Rightarrow AH^2=BH.CH$
c.
$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{AB^2+AC^2}{AB^2.AC^2}$
$=\frac{BC^2}{AB^2.AC^2}=(\frac{BC}{AB.AC})^2=(\frac{BC}{2S_{ABC}})^2$
$=(\frac{BC}{AH.BC})^2=\frac{1}{AH^2}$
.d. Hiển nhiên theo công thức diện tích.
Ta có : \(S_{ABC}=\dfrac{AH.BC}{2}\)
Kẻ đường cao từ B xuống AC tại E do đó :
\(S_{ABC}=\dfrac{BE.AC}{2}\)
mà \(BE< AB\) ( AB là cạnh huyền trong tam giác ABE )
Do đó :
\(\dfrac{AB.AC}{2}\ge\dfrac{BE.AC}{2}=\dfrac{AH.BC}{2}\)
\(\Rightarrow AB.AC\ge AH.BC\left(đpcm\right)\)
Dấu bằng xảy ra khi và chỉ khi : BE trùng với AB
\(\Leftrightarrow\Delta ABC\) vuông tại A .