K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2023

474+7+7=2(474+7+7)2=8278+27+142=727+17+27+1+142=(71)2(7+1)2+142=717+1+142=7171+142=1422=2(72)2=72

AH
Akai Haruma
Giáo viên
30 tháng 5 2023

Lời giải:
\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\sqrt{\frac{8-2\sqrt{7}}{2}}-\sqrt{\frac{8+2\sqrt{7}}{2}}=\sqrt{\frac{(\sqrt{7}-1)^2}{2}}-\sqrt{\frac{(\sqrt{7}+1)^2}{2}}\)

\(=\frac{|\sqrt{7}-1|}{\sqrt{2}}-\frac{|\sqrt{7}+1|}{\sqrt{2}}=\frac{\sqrt{7}-1-(\sqrt{7}+1)}{\sqrt{2}}=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)

\(\left(4+\sqrt{7}\right)\cdot\dfrac{\sqrt{4-\sqrt{7}}}{\sqrt{4+\sqrt{7}}}\)

\(=\left(4+\sqrt{7}\right)\cdot\dfrac{\sqrt{7}-1}{\sqrt{7}+1}\)

\(=\dfrac{\left(\sqrt{7}+1\right)^2\cdot\left(\sqrt{7}-1\right)}{\sqrt{7}+1}\cdot\dfrac{1}{2}\)

\(=\dfrac{6}{2}=3\)

NV
4 tháng 10 2021

\(=\dfrac{\left(8+2\sqrt{7}\right)\sqrt{8-2\sqrt{7}}}{2\sqrt{8+2\sqrt{7}}}=\dfrac{\left(\sqrt{7}+1\right)^2\sqrt{\left(\sqrt{7}-1\right)^2}}{2\sqrt{\left(\sqrt{7}+1\right)^2}}\)

\(=\dfrac{\left(\sqrt{7}+1\right)^2\left(\sqrt{7}-1\right)}{2\left(\sqrt{7}+1\right)}=\dfrac{\left(\sqrt{7}+1\right)\left(\sqrt{7}-1\right)}{2}\)

\(=\dfrac{7-1}{2}=3\)

 

5 tháng 9 2023

a) \(\sqrt{2}\left(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\right)\)

\(=\sqrt{2\cdot\left(4+\sqrt{7}\right)}+\sqrt{2\cdot\left(4-\sqrt{7}\right)}\)

\(=\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}\right)^2+2\cdot\sqrt{7}\cdot1+1^2}+\sqrt{\left(\sqrt{7}\right)^2-2\cdot\sqrt{7}\cdot1+1^2}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(=\left|\sqrt{7}+1\right|+\left|\sqrt{7}-1\right|\)

\(=\sqrt{7}+1+\sqrt{7}-1\)

\(=2\sqrt{7}\)

b) \(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{2}\cdot\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\)

\(=\dfrac{\sqrt{2\cdot\left(2-\sqrt{3}\right)}-\sqrt{2\cdot\left(2+\sqrt{3}\right)}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)

\(=\dfrac{\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{ }\)

\(=-\dfrac{2}{\sqrt{2}}\)

\(=-\sqrt{2}\)

12 tháng 10 2023

a: \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)

\(=4-\sqrt{15}+\sqrt{15}=4\)

b: \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=2+\sqrt{3}-2+\sqrt{3}\)

\(=2\sqrt{3}\)

c: \(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=2\sqrt{5}+3-2\sqrt{5}+3=6\)

18 tháng 6 2023

\(\sqrt{7-4\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)

\(=\sqrt{2^2-2.2.\sqrt{3}+\sqrt{3^2}}+\sqrt{3^2+2.3.\sqrt{3}+\sqrt{3^2}}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)

\(=\left|2-\sqrt{3}\right|+\left|3+\sqrt{3}\right|\)

\(=2-\sqrt{3}+3+\sqrt{3}\)

\(=5\)

30 tháng 10 2018

\(B=\frac{1}{\sqrt{5}+\sqrt{7}}-\frac{1}{\sqrt{5}-\sqrt{7}}=\frac{\sqrt{5}-\sqrt{7}-\sqrt{5}-\sqrt{7}}{5-7}=\frac{-2\sqrt{7}}{-2}=\sqrt{7}\)

\(C=\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}+\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}=\sqrt{\left(\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}+\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}\right)^2}\)

\(C=\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}+2\sqrt{\frac{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}}+\frac{4-\sqrt{7}}{4+\sqrt{7}}}\)

\(C=\sqrt{\frac{\left(4+\sqrt{7}\right)^2}{16-7}+\frac{\left(4-\sqrt{7}\right)^2}{16-7}+2}\)

\(C=\sqrt{\frac{\left(4+\sqrt{7}+4-\sqrt{7}\right)^2-2\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}{16-7}+2}\)

\(C=\sqrt{\frac{16^2-2\left(16-7\right)}{9}+2}=\sqrt{\frac{238}{9}+2}=\sqrt{\frac{256}{9}}=\frac{16}{3}\)

Chúc bạn học tốt ~ 

30 tháng 10 2018

thanks ban 

a: \(=2\sqrt{2}+1-3=2\sqrt{2}-2\)

b: \(=\sqrt{3}+1-2\sqrt{3}-1=-\sqrt{3}\)

c: \(=2-\sqrt{3}+\sqrt{3}-1=1\)

24 tháng 9 2021

1)\(=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{26^2}=\sqrt{5}-2+26=24-\sqrt{5}\)

2) \(=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)

3) \(=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)\(=\left[{}\begin{matrix}1\left(x>1\right)\\-1\left(x< 1\right)\end{matrix}\right.\)

4) \(=\sqrt{\left(\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{1}{2}}\right)^2}=\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}-\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}=2\sqrt{\dfrac{1}{2}}=\sqrt{2}\)

24 tháng 9 2021

2. \(\dfrac{x^2-5}{x+\sqrt{5}}=\dfrac{x^2-\left(\sqrt{5}\right)^2}{x+\sqrt{5}}=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)

3. \(\dfrac{\sqrt{x^2-2x+1}}{x-1}=\dfrac{\sqrt{x^2-2.x.1+1^2}}{x-1}=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{|x-1|}{x-1}=\left[{}\begin{matrix}x-1>0\left(x>1\right)\\x-1< 0\left(x< 1\right)\end{matrix}\right.=\left[{}\begin{matrix}=1\\=\dfrac{x+1}{x-1}\end{matrix}\right.\)

7 tháng 9 2016

a)\(\sqrt{1-2\sqrt{10}+10}=\sqrt{\left(1-\sqrt{10}\right)^2}=\left|1-\sqrt{10}\right|=\sqrt{10}-1\)
(vì 1<\(\sqrt{10}\))

b)\(\Rightarrow\sqrt{2}\left[\left(\sqrt{4-\sqrt{7}}\right)-\left(\sqrt{4+\sqrt{7}}\right)\right]=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+\sqrt{7}\right)^2}=\sqrt{7}-1-1-\sqrt{7}=-2\Rightarrow\frac{-2}{\sqrt{2}}=-\sqrt{2}\)