\(\sqrt{\frac{3x-1}{3x+1}}\)=\(\frac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(3x+2\sqrt{3x}+4=\left(\sqrt{3x}+1\right)^2+3>0;1+\sqrt{3x}>0,\forall x\ge0\), nên đk để A có nghĩa là
\(\left(\sqrt{3x}\right)^3-8-\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)\ne0;x\ge0\Leftrightarrow\sqrt{3x}\ne2\Leftrightarrow0\le x\ne\frac{4}{3}\)
A=\(\left(\frac{6x+4}{\left(\sqrt{3x}\right)^3-2^3}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+\left(\sqrt{3x}\right)^3}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
\(=\left(\frac{6x+4-\left(\sqrt{3x}-2\right)\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-\sqrt{3x}+1-\sqrt{3x}\right)\)
\(=\left(\frac{3x+4+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-2\sqrt{3x}+1\right)\)
\(=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\left(0\le x\ne\frac{4}{3}\right)\)
b) \(A=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}=\frac{\left(\sqrt{3x}-2\right)^2+2\left(\sqrt{3x}-2\right)+1}{\sqrt{3x}-2}=\sqrt{3x}+\frac{1}{\sqrt{3x}-2}\)
Với \(x\ge0\), để A là số nguyên thì \(\sqrt{3x}-2=\pm1\Leftrightarrow\orbr{\begin{cases}\sqrt{3x}=3\\\sqrt{3x}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=9\\3x=1\end{cases}\Leftrightarrow}x=3}\) (vì \(x\in Z;x\ge0\))
Khi đó A=4
a)\(ĐK:-3\le x\le6\)
\(PT\Leftrightarrow\sqrt{x+3}+\sqrt{6-x}=3\)
\(\Leftrightarrow x+3+6-x+2\sqrt{\left(x+3\right)\left(6-x\right)}=9\)
\(\Leftrightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\left(tm\right)\)
b/ ĐKXĐ: \(x\ge7\)
\(\sqrt{3x-2}=1+\sqrt{x-7}\)
\(\Leftrightarrow3x-2=x-6+2\sqrt{x-7}\)
\(\Leftrightarrow x+2=\sqrt{x-7}\)
\(\Leftrightarrow x^2+4x+4=x-7\)
\(\Leftrightarrow x^2+3x+11=0\) (vô nghiệm)
c/ ĐKXĐ: \(x\ge1;x\ne50\)
\(1-\sqrt{3x+1}=\sqrt{x-1}-7\)
\(\Leftrightarrow\sqrt{x-1}+\sqrt{3x+1}=8\)
\(\Leftrightarrow4x+2\sqrt{3x^2-2x-1}=64\)
\(\Leftrightarrow\sqrt{3x^2-2x-1}=32-2x\) (\(x\le16\))
\(\Leftrightarrow3x^2-2x-1=\left(32-2x\right)^2\)
Đặt \(\sqrt{\frac{3x-1}{x}}=a\)
\(pt\Leftrightarrow2a=\frac{1}{a^2}+1\)
\(\Leftrightarrow\frac{1}{a^2}-2a+1=0\)
\(\Leftrightarrow\frac{-2a^3+a^2+1}{a^2}=0\)
\(\Leftrightarrow-2a^3+a^2+1=0\)
\(\Leftrightarrow-2a^3+2a^2-a^2+a-a+1=0\)
\(\Leftrightarrow-2a^2\left(a-1\right)-a\left(a-1\right)-\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(-2a^2-a-1\right)=0\)
Dễ chứng minh \(-2a^2-a-1< 0\forall a\)
\(\Rightarrow a-1=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt{\frac{3x-1}{x}}=1\)
\(\Leftrightarrow3x-1=x\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy....
Đặt \(\sqrt{\frac{2x}{x-1}}=a\)
\(pt\Leftrightarrow3a+\frac{4}{a}=\frac{3}{a^2}+10\)
\(\Leftrightarrow\frac{3}{a^2}-\frac{4}{a}-3a+10=0\)
\(\Leftrightarrow\frac{-3a^3+10a^2-4a+3}{a^2}=0\)
\(\Leftrightarrow-3a^3+10a^2-4a+3=0\)
Giải pt ta được \(a=3\)
\(\Leftrightarrow\sqrt{\frac{2x}{x-1}}=3\)
\(\Leftrightarrow\frac{2x}{x-1}=9\)
\(\Leftrightarrow x=\frac{9}{7}\)
Vậy...
Ta có : \(\frac{3}{2}\sqrt{3x}-\sqrt{3x}-5=\frac{1}{2}\sqrt{3x}\)
\(\Rightarrow\frac{3}{2}\sqrt{3x}-\sqrt{3x}-5-\frac{1}{2}\sqrt{3x}=0\)
\(\Rightarrow\frac{3}{2}\sqrt{3x}-\sqrt{3x}-\frac{1}{2}\sqrt{3x}=5\)
\(\Rightarrow\sqrt{3x}\left(\frac{3}{2}-1-\frac{1}{2}\right)=5\)
\(\Rightarrow\sqrt{3x}.0=5\)
Vậy bất phương trình
\(\frac{3}{2}\sqrt{3x}-\sqrt{3x}-\frac{1}{2}\sqrt{3x}=5\)
\(0\sqrt{3x}=5\)(vô lý)
vậy pt vô nghiệm
Cứ quy đồng là ra à. Làm biếng trình bày quá. Nên cho bạn đáp số thôi nhé
a/ \(\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)
b/ x = 3 và A = 4
Bình phương 2 vế ta được
\(\frac{3x-1}{3x+1}=\frac{1}{9}\)
=> (3x-1)9 = 3x+1
=> 27x -9 = 3x+1
=> 24x = 10
=> x=5/12
Có ai biết điểm xuất sắc là gì ko ? tác dụng của nó nữa , mik mới dùng OLM nên ko rành lắm
------------thanks--------------