K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2023

C = 1 + 3 + 5 + ... + (2n + 1)

Dãy số trên là dãy số cách đều với khoảng cách là : 3 - 1 = 2

Số số hạng của dãy số trên là :  (2n + 1 - 1) : 2 + 1 = n + 1

C = (2n + 1 + 1)(n + 1) : 2

C = (2n + 2)(n + 1) : 2

C = (n + 1)2

28 tháng 5 2023

C = 1 + 3 + 5 + ... + (2n + 1)

Dãy số trên là dãy số cách đều với khoảng cách là : 3 - 1 = 2

Số số hạng của dãy số trên là :  (2n + 1 - 1) : 2 + 1 = n + 1

C = (2n + 1 + 1)(n + 1) : 2

C = (2n + 2)(n + 1) : 2

C = (n + 1)2

Hok tốt!

24 tháng 10 2021

#include <conio.h>

#include <stdio.h>

int tong(int n)

{

int i;

int s=0;

for (i=0;i<=n;i++)

s+=(2*i+1);

return s;

}

void main()

{

int n;

printf("\nNhap N=   ");

scanf("%d",&n);

printf("\n Tong s = %d",tong(n));

getch();

}

24 tháng 10 2021

bạn dùng include<bits/stdc++.h> đc k

15 tháng 8 2023

a) \(1+2+3+4+...+n\)

\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right):2\)

\(=n\left(n+1\right):2\)

\(=\dfrac{n\left(n+1\right)}{2}\)

b) \(2+4+6+..+2n\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

c) \(1+3+5+...+\left(2n+1\right)\)

\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)

\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

15 tháng 8 2023

d) \(1+4+7+10+...+2005\)

\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)

\(=2006\cdot\left(2004:3+1\right):2\)

\(=2006\cdot\left(668+1\right):2\)

\(=1003\cdot669\)

\(=671007\)

e) \(2+5+8+...+2006\)

\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)

\(=2008\cdot\left(2004:3+1\right):2\)

\(=1004\cdot\left(668+1\right)\)

\(=1004\cdot669\)

\(=671676\)

g) \(1+5+9+...+2001\)

\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)

\(=2002\cdot\left(2000:4+1\right):2\)

\(=1001\cdot\left(500+1\right)\)

\(=1001\cdot501\)

\(=501501\)

3 tháng 8 2019

A = 1 + 2 + 3 + ... + n

A = (n + 1).n : 2

B = 1 + 3 + 5 + ... + (2n - 1)

B = (2n - 1 + 1).[(2n - 1 - 1) : 2 + 1]

B = 2n[(2n - 2) : 2 + 1]

B = 2n[2(n - 2) : 2 + 1]

B = 2n(n - 2 + 1)

B = 2n(n - 1)

C = 2 + 4 + 6 + ... + 2n

C = (2n + 2)[(2n - 2) : 2 + 1]

C = 2(n + 1)[2(n - 1) : 2 + 1]

C = 2(n + 1)(n - 1 + 1)

C = 2(n + 1)n

1) \(\frac{n\left(n+1\right)}{2}\)

2) \(\)

16 tháng 2 2021

Xét dãy 1 + 3 + 5 + ... + (2n-1) 

Nhận xét : Đây là dãy số cách đều 2 đơn vị 

Số số hạng: \(\dfrac{\left(2n-1-1\right)}{2}+1=\dfrac{2n-2}{2}+1=n-1+1=n\) (số)

Tổng dãy: \(\dfrac{2n-1+1}{2}.n=n^2\)

a) Số số hạng của dãy số là: 

(n-1):1+1=n-1+1=n(số hạng)

Tổng của dãy số là: 

\(\left(n+1\right)\cdot\dfrac{n}{2}=\dfrac{n\left(n+1\right)}{2}\)

b) Số số hạng của dãy số là:

\(\dfrac{2n-1-1}{2}+1=\dfrac{2n-2}{2}+1=n-1+1=n\)(số hạng)

Tổng của dãy số là:

\(\left(1+2n-1\right)\cdot\dfrac{n}{2}==\dfrac{2n^2}{2}=n^2\)

a) =\(\frac{n\left(n+1\right)}{2}\)

b) =\(n\left(n+1\right)\)

c) =\(\left(n+1\right)^2\)

d) =\(\left(2008+1\right).\left(\frac{2008-1}{3}+1\right):2=673015\)