Tìm gtnn của bthuc C= x² -12x +34
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`B =9x^2 +6x = (3x)^2 + 2*3x*1 +1 -1)`
`=(3x +1)^2 -1`
Do `(3x+1)^2 >=0 AA x`
`=> (3x+1)^2 -1 >=-1 AA x`
hay `B>=-1`
Dấu ''='' xảy ra khi và chỉ khi `3x+1=0 =>x =-1/3`
Vậy GTNN của `B=-1` khi `x=-1/3`
B = 9\(x^2\) + 6\(x\)
B = 9\(x^2\) + 6\(x\) + 1 - 1
B = (3\(x\) + 1)2 - 1
Vì (3\(x\) + 1)2 ≥ 0 ⇒ (3\(x\) + 1)2 - 1 ≥ -1
B(min) = -1⇔ \(x\) = - \(\dfrac{1}{3}\)
Bài 1:
$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$
$\Leftrightarrow x=4$
Bài 2: $x-\sqrt{x}$
ĐKXĐ: $x\geq 0$
$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$
$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$
$\Leftrightarrow x=\frac{1}{4}$
a: ĐKXĐ: x>0; x<>1
\(Q=\dfrac{x+\sqrt{x}+\sqrt{x}}{x-1}:\dfrac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-1}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{2\sqrt{x}+x}\)
\(=\dfrac{x}{\sqrt{x}-1}\)
b: Q>2
=>Q-2>0
=>\(\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)
=>căn x-1>0
=>x>1
a) ĐK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(Q=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{x+\sqrt{x}+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{x\left(\sqrt{x}+1\right)}{x+2\sqrt{x}}\)
\(=\dfrac{x}{\sqrt{x}-1}\)
b) Q>2 <=> \(\dfrac{x}{\sqrt{x}-1}>2\Leftrightarrow x>2\sqrt{x}-2\)
\(\Leftrightarrow x-2\sqrt{x}+2>0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+1>0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2\ge0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1\le0\\\sqrt{x}-1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le1\end{matrix}\right.\)
KL:.....
\(A=\left(x+3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=-3\\ B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{29}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{29}{4}\ge-\dfrac{29}{4}\\ B_{min}=-\dfrac{29}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ C=\left(9x^2-12x+4\right)+2017=\left(3x-2\right)^2+2017\ge2017\\ C_{min}=2017\Leftrightarrow x=\dfrac{2}{3}\)
C = \(x^2\) - 12 \(x\) + 34
C = (\(x^2\) - 12\(x\) + 36) - 2
C = (\(x\) - 6)2 - 2
Vì (\(x\) - 6)2 ≥ 0 ⇒ ( \(x\) - 6)2 - 2 ≥ -2
C(min) = - 2 ⇔ \(x\) - 6 = 0 ⇔ \(x\) = 6
Vậy giá trị nhỏ nhất của biểu thức là - 2 xảy ra khi \(x\) = 6
C = �2x2 - 12 �x + 34
C = (�2x2 - 12�x + 36) - 2
C = (�x - 6)2 - 2
Vì (�x - 6)2 ≥ 0 ⇒ ( �x - 6)2 - 2 ≥ -2
C(min) = - 2 ⇔ �x - 6 = 0 ⇔ �x = 6
Vậy giá trị nhỏ nhất của biểu thức là - 2 diễn ra khi �x = 6