1/1+2 + 1/1+2+3 + 1/1+2+3+4+.....+1/1+2+3+.....+2020
Giải chi tiết nha !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=4.\left(-\dfrac{1}{8}\right)-2.\dfrac{1}{4}-\dfrac{3}{2}+1=\)
\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{3}{2}+1=-\dfrac{3}{2}\)
= 4 . -1/8 - 2 . -1/4 + 3 . -1/2 + 1
= -1/2 - -1/2 + -3/2 + 1
= -1/2
Sửa đề: 2020/1+2019/2+...+1/2020
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}}{\left(1+\dfrac{2019}{2}\right)+\left(1+\dfrac{2018}{3}\right)+...+\dfrac{1}{2020}+1+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}}{\dfrac{2021}{2}+\dfrac{2021}{3}+...+\dfrac{2021}{2020}+\dfrac{2021}{2021}}\)
=1/2021
\(P = (\frac{2}{2} \times\frac{1}{1+2}) + ( \frac{2}{2} \times \frac{1}{1+2+3})+...+(\frac{2}{2} \times \frac{1}{1+2+..+2018}) \) ( Phép tính sẽ không bị thay đổi kết quả vì 2/2 vốn bằng 1)
\(P = \frac{2}{2\times (1+2)} + \frac{2}{2\times (1+2+3)}+...+ \frac{2}{2 \times (1+2+..+2018)}\)
\(P = \frac{2}{6} + \frac{2}{12}+..+\frac{2}{4076361}\)
\(P=\frac{1}{2\times3} + \frac{1}{3\times 4}+..+\frac{1}{1018\times 1019}\)
\(P = \frac{1}{2} - \frac{1}{3} + \frac{1}{3}-\frac{1}{4}+\frac{1}{4} - ...- \frac{1}{1018} + \frac{1}{1018} -\frac{1}{1019} \)
\(P = \frac{1}{2} - \frac{1}{1019} = \frac{2017}{2038}\)
a) đặt tên biểu thức là A. Ta có :
A = 1.2+2.3+3.4+...+99.100
3A = 1.2.3+2.3.3+3.4.3+...+99.100.3
3A = 1.2.3 + 2.3.(4-1 ) + 3.4.(5-2) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
A = 99.100.101 : 3
A = 333300
b) đặt tên biểu thức là B ta có :
B= 1.2+2.3+3.4+...+n.(n+1)
3B = 1.2.3+2.3.3+3.4.3+...+n.(n+1).3
3B = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + n.(n+1).[ (n+2) - ( n -1 ) ]
3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n.(n+1).(n+2) - (n-1).n.(n+1)
B = n.(n+1).(n+2) : 3
\(A=1\cdot2+2\cdot3+...+99\cdot100\)
\(3\cdot A=1\cdot2\cdot3+2\cdot3\cdot3+...+99\cdot100\cdot3\)
\(3\cdot A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(3\cdot A=1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101-1\cdot2\cdot3-...-98\cdot99\cdot100=\)
\(3\cdot A=99\cdot100\cdot101\)
\(A=99\cdot100\cdot101\div3=333300\)
CCâu b tương tự
\(=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+100\right)}{100.1+99.2+98.3+...+2.99+1.100}\)
\(=\frac{1.100+2.99+3.98+...+99.2+100.1}{100.1+99.2+98.3+...+2.99+1.100}\)
\(=1\)
Ta dùng công thức \(1+2+...+n=\dfrac{n\times\left(n+1\right)}{2}\). Khi đó
\(\dfrac{1}{1+2}=\dfrac{1}{\dfrac{2\times3}{2}}=\dfrac{2}{2\times3}\);
\(\dfrac{1}{1+2+3}=\dfrac{1}{\dfrac{3\times4}{2}}=\dfrac{2}{3\times4}\);
\(\dfrac{1}{1+2+3+4}=\dfrac{1}{\dfrac{4\times5}{2}}=\dfrac{2}{4\times5}\);
...;
\(\dfrac{1}{1+2+3+...+2020}=\dfrac{1}{\dfrac{2020\times2021}{2}}=\dfrac{2}{2020\times2021}\).
\(\Rightarrow\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+...+2020}\)
\(=\dfrac{2}{2\times3}+\dfrac{2}{3\times4}+\dfrac{2}{4\times5}+...+\dfrac{2}{2020\times2021}\)
\(=2\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+...+\dfrac{1}{2020\times2021}\right)\)
\(=2\left(\dfrac{3-2}{2\times3}+\dfrac{4-3}{3\times4}+\dfrac{5-4}{4\times5}+...+\dfrac{2021-2020}{2020\times2021}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{2021}\right)\)
\(=\dfrac{2019}{2021}\)