K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

x+30%x=1,3.

130%x=1,3.

x=1,3:130%.

x=1.

Vaayjn x=1.

12 tháng 5 2017

Ta có:

x + 30%.x= 1,3

\(\Rightarrow\) x.(1+0,3)= 1,3

\(\Rightarrow\) x . 1,3 = 1,3

\(\Rightarrow\) x = 1

18 tháng 4 2022

\(#V\)

\(⇔ x ( 1 + 0 , 3 ) = 1 , 3\)

\(⇔ x .1 , 3 = 1 , 3\)

\(⇔ x = 1 , 3 : 1 , 3\)

\(⇔ x = 1\)

18 tháng 4 2022

x+30%.x=-1,3

=>x+310.x=-1,3

=>x.(310+1)=-1,3

=>x.1,3=-1,3

=>x=-1,3:1,3

=>x=-1

8 tháng 8 2023

\(x^2=x^3\\ \Rightarrow x^2-x^3=0\\ \Rightarrow x^2\left(1-x\right)\\ \Rightarrow\left[{}\begin{matrix}x^2=0\\1-x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

8 tháng 8 2023

x = 0 hoặc x = 1 vì mũ của 0 và 1 kq vẫn là chính nó

30 tháng 11 2018

b)\(\left(x-8\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-8=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=2\end{cases}}\)

c) \(\left(x+1\right)+\left(x+2\right)+...+\left(x+10\right)=9x+200\)

\(\Leftrightarrow\left(x+x+...+x\right)+\left(1+2+...+10\right)=9x+200\) (10 số hạng x)

\(\Leftrightarrow10x+55=9x+200\Leftrightarrow x+55=200\)

\(\Leftrightarrow x=145\)

30 tháng 11 2018

các bạn ơi giúp mik ý đầu tiên đi

20 tháng 6 2021

A = \(\dfrac{4\sqrt{x}+9}{2\sqrt{x}+1}\)

Mà \(4\sqrt{x}+9>0\)

\(2\sqrt{x}+1>0\)

=> A > 0

A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}\) = \(2+\dfrac{7}{2\sqrt{x}+1}\)

Mà \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)

<=> \(A\le9\)

<=> 0 < A \(\le9\)

Mà A thuộc Z

<=> A \(\in\){1;2;3;4;5;6;7;8;9}

Đến đây bn thay A vào để tìm x nhé

20 tháng 6 2021

A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}=2+\dfrac{7}{2\sqrt{x}+1}\)

Mà \(2\sqrt{x}+1>0< =>\dfrac{7}{2\sqrt{x}+1}>0\)

<=> A > 2

Có \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)

<=> \(A\le9\)

<=> 2 < A \(\le9\)

Mà A thuộc Z

<=> \(A\in\left\{3;4;5;6;7;8;9\right\}\)

Đến đây bn thay A vào để tìm x nhé

23 tháng 6 2021

A = \(\dfrac{6\sqrt{x}+8}{3\sqrt{x}+2}=2+\dfrac{4}{3\sqrt{x}+2}\)

Có \(3\sqrt{x}+2>0< =>\dfrac{4}{3\sqrt{x}+2}>0\) <=> A > 2

Có: \(3\sqrt{x}+2\ge2< =>\dfrac{4}{3\sqrt{x}+2}\le2\) <=> A \(\le4\)

<=> 2 < A \(\le4\)

Mà A nguyên

<=> \(\left[{}\begin{matrix}A=3\\A=4\end{matrix}\right.\)

TH1: A = 3

<=> \(\dfrac{4}{3\sqrt{x}+2}=1\)

<=> \(3\sqrt{x}+2=4< =>x=\dfrac{4}{9}\)

TH2: A = 4

<=> \(\dfrac{4}{3\sqrt{x}+2}=2< =>3\sqrt{x}+2=2< =>x=0\)

20 tháng 4 2023

\(x+\dfrac{1}{5}-\dfrac{3}{7}=\dfrac{6}{35}\)
\(x+\dfrac{1}{5}=\dfrac{6}{35}+\dfrac{3}{7}\)
\(x+\dfrac{1}{5}=\dfrac{6}{35}+\dfrac{15}{35}\)
\(x+\dfrac{1}{5}=\dfrac{21}{35}\)
\(x=\dfrac{21}{35}-\dfrac{1}{5}\)
\(x=\dfrac{21}{35}-\dfrac{7}{35}\)
\(x=\dfrac{14}{35}=\dfrac{2}{5}\)

20 tháng 4 2023

\(x\) + \(\dfrac{1}{5}\) - \(\dfrac{3}{7}\) = \(\dfrac{6}{35}\) 

\(x\) + \(\dfrac{1}{5}\) = \(\dfrac{6}{35}\) + \(\dfrac{3}{7}\)

\(x\) + \(\dfrac{1}{5}\) = \(\dfrac{3}{5}\)

\(x\)       = \(\dfrac{3}{5}\) - \(\dfrac{1}{5}\)

\(x\) =\(\dfrac{2}{5}\)

19 tháng 8 2021

x = 1 nha bạn mình đangtìm lời giải

5 tháng 11 2024

          Đây là toán nâng cao chuyên đề tìm phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

                        Giải: 

         20\(^x\) : 14\(^x\) = \(\dfrac{10}{7}\)\(x\)  (\(x\) \(\in\) N)

    \(\left(\dfrac{20}{14}\right)^x\) = \(\dfrac{10}{7}\)⇒ \(x\)\(\left(\dfrac{10}{7}\right)^x\) \(\dfrac{10}{7}\)\(x\) 

      \(x\) = \(\left(\dfrac{10}{7}\right)^x\)\(\dfrac{10}{7}\) ⇒ \(x\) =\(\left(\dfrac{10}{7}\right)^{x-1}\)

          Nếu \(x\) = 0 ta có 0 = (\(\dfrac{10}{7}\))-1 = \(\dfrac{7}{10}\) (vô lý)

          Nếu \(x\) = 1 ta có: 1 = \(\left(\dfrac{10}{7}\right)^{1-1}\) = 1 (nhận)

          Nếu \(x\) > 1 ta có:  \(x\) \(\in\) N mà (\(\dfrac{10}{7}\))\(x\) không phải là số tự nhiên nên 

                   \(x\) \(\ne\) (\(\dfrac{10}{7}\))\(x-1\)  (loại)

Từ những lập luận trên ta có \(x\) = 1 là số tự nhiên duy nhất thỏa mãn đề bài.

Vậy \(x\) = 1 

                   

18 tháng 8 2017

Ta có:

\(x^3+x^2-4x=4\)

\(\Rightarrow x^3+x^2-4x-4=0\)

\(\Rightarrow\left(x^3+x^2\right)-\left(4x+4\right)=0\)

\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+2\right)\left(x+1\right)=0\)

\(\Rightarrow x-2=0;x+2=0;x+1=0\)

\(\Rightarrow x\in\left\{2;-2;-1\right\}\)

18 tháng 8 2017

a)\(2.\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right).\left(2-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

b)\(3x^3-48x=0\)

\(\Leftrightarrow3x\left(x^2-16\right)=0\)

\(\Leftrightarrow3x.\left(x-4\right).\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\frac{x=4}{\frac{x=0}{x=-4}}}\)

c)\(x^3+x^2-4x=4\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{x=0}{x=2}\\\overline{x=-2}\end{cases}}\)

13 tháng 11 2023

x-2,5= 19,6+ 7,81

x-2,5= 27,41

x= 27,41+ 2,5

x=29,91

13 tháng 11 2023

(x - 2,5 ) - 7,81 = 19,6

x - 2,5    = 19,6 + 7,81

x - 2,5    = 27,41

x            = 27,41 + 2,5

x            =  29,91