-1/4< x/12< 1/6 tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Ta có: \(12,\left(1\right)=12+0,\left(1\right)=12+\frac{1}{9}=\frac{109}{9}\);
\(2,3\left(6\right)=2,3+\frac{1}{10}\times0,\left(6\right)=2,3+\frac{1}{10}\times6\times0,\left(1\right)=2,3+\frac{1}{10}\times6\times\frac{1}{9}=\frac{71}{30}\)\(4,\left(21\right)=4+21\times0,\left(01\right)=4+21\times\frac{1}{99}=\frac{139}{33}\)
\(\Rightarrow\)\(\left[\frac{109}{9}-\frac{71}{30}\right]\div\frac{139}{33}=\frac{9647}{4170}\)
2)Ta có: \(0,\left(12\right)=12\times0,\left(01\right)=12\times\frac{1}{99}=\frac{4}{33}\)
\(1,\left(6\right)=1+6\times0,\left(1\right)=1+6\times\frac{1}{9}=\frac{5}{3}\)
\(0,\left(4\right)=4\times0,\left(1\right)=4\times\frac{1}{9}=\frac{4}{9}\)
\(\Rightarrow\frac{4}{33}\div\frac{5}{3}=x\div\frac{4}{9}\Rightarrow x\div\frac{4}{9}=\frac{4}{55}\Rightarrow x=\frac{4}{55}\times\frac{4}{9}\Rightarrow x=\frac{16}{495}\)
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
a) Ta có: \(x+\dfrac{1}{3}=\dfrac{2}{6}\)
\(\Leftrightarrow x+\dfrac{1}{3}=\dfrac{1}{3}\)
hay x=0
Vậy: x=0
b) Ta có: \(x-\dfrac{1}{4}=\dfrac{1}{-2}\)
\(\Leftrightarrow x-\dfrac{1}{4}=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{-1}{2}+\dfrac{1}{4}=\dfrac{-2}{4}+\dfrac{1}{4}=\dfrac{-1}{4}\)
Vậy: \(x=-\dfrac{1}{4}\)
c) Ta có: \(\dfrac{-1}{6}=\dfrac{3}{2}x\)
\(\Leftrightarrow x=\dfrac{-1}{6}:\dfrac{3}{2}=\dfrac{-1}{6}\cdot\dfrac{2}{3}\)
hay \(x=\dfrac{-1}{9}\)
Vậy: \(x=\dfrac{-1}{9}\)
Đáp án là B vì 12: -3 = -4; 12: -4 = -3; 12: -6 = -2;12: -12 = -1 và đáp ứng điều kiện a< -2
Bài 1:
a: \(x=\dfrac{2}{3}:\dfrac{3}{5}=\dfrac{2}{3}\cdot\dfrac{5}{3}=\dfrac{10}{9}\)
b: \(x=\dfrac{17}{8}:\dfrac{7}{17}=\dfrac{17}{8}\cdot\dfrac{17}{7}=\dfrac{289}{56}\)
c: \(x=-\dfrac{3}{4}:\dfrac{7}{12}=\dfrac{-3}{4}\cdot\dfrac{12}{7}=\dfrac{-63}{28}=-\dfrac{9}{4}\)
d: \(\Leftrightarrow x\cdot\dfrac{1}{6}=\dfrac{3}{8}-\dfrac{1}{4}=\dfrac{1}{4}\)
hay \(x=\dfrac{1}{4}:\dfrac{1}{6}=\dfrac{3}{2}\)
e: \(\Leftrightarrow\dfrac{1}{2}:x=-4-\dfrac{1}{3}=-\dfrac{17}{3}\)
hay \(x=-\dfrac{1}{2}:\dfrac{17}{3}=\dfrac{-3}{34}\)
a) \(\dfrac{x}{3}=\dfrac{4}{12}\Rightarrow x=\dfrac{4}{12}\cdot3=\dfrac{12}{12}=1\)
b) \(\dfrac{x-1}{x-2}=\dfrac{3}{5}\) (Điều kiện : \(x\ne2\))
\(\Rightarrow5\left(x-1\right)=3\left(x-2\right)\)
\(\Leftrightarrow5x-5=3x-6\Leftrightarrow5x-3x=-6+5\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
c) \(2x:6=\dfrac{1}{4}\Leftrightarrow2x=\dfrac{1}{4}\cdot6=\dfrac{6}{4}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{2}:2=\dfrac{3}{2}\cdot\dfrac{1}{2}=\dfrac{3}{4}\)
d) \(\dfrac{x^2+x}{2x^2+1}=\dfrac{1}{2}\)
\(\Rightarrow2\left(x^2+x\right)=2x^2+1\)
\(\Leftrightarrow2x^2+2x=2x^2+1\)
\(\Leftrightarrow2x^2+2x-2x^2=1\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\).
a) \(\left(12-12\dfrac{1}{3}\right):x+\dfrac{1}{6}=-\dfrac{2}{3}\)
\(-\dfrac{1}{3}x=-\dfrac{2}{3}-\dfrac{1}{6}\)
\(-\dfrac{1}{3}x=-\dfrac{5}{6}\)
\(x=-\dfrac{5}{6}:\left(-\dfrac{1}{3}\right)\)
\(x=\dfrac{5}{2}\)
b) \(\dfrac{4}{x}=\dfrac{x}{16}\)
\(x^2=4.16\)
\(x^2=64\)
\(\Rightarrow x=8;x=-8\)
`a)=>(12-37/3):x+1/6=-2/3`
`=>(12-37/3):x=-5/6`
`=>(-1/3):x=-5/6`
`=>x=(-1/3):(-5/6)`
`=>x=6/15=2/5`
`b)4/x=x/16`
`=>x^2=4*16`
`=>x^2=64`
`=>x^2=(+-8)^2`
ĐK:\(x\ge0;y\ge1\)
\(\Leftrightarrow\left(x-4\sqrt{x}+4\right)+\left(y-1-6\sqrt{y-1}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)
Nhận thấy VT\(\ge0\)\(\forall x,y\) thỏa mãn đk
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{y-1}=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=10\end{matrix}\right.\)(tm)
Vậy...
- \(\dfrac{1}{4}\) < \(\dfrac{x}{12}\) < \(\dfrac{1}{6}\) tìm \(x\)
\(\dfrac{-3}{12}\) < \(\dfrac{x}{12}\) < \(\dfrac{2}{12}\)
-3 < \(x\) < 2
vì \(x\) \(\in\) Z nên \(x\) \(\in\) { -2; -1; 0; 1}
Kết luận: \(x\) \(\in\) {-2; -1; 0; 1}