Cho △ABC có 3 góc nhọn nội tiếp (O) (AB<AC). Các đường cao BM và CN cắt nhau tại H. Gọi P là giao điểm của MN và BC. Đường thẳng AP cắt (O) tại K,Gọi I là trung điểm của BC.Chứng minh H,K,I thẳng hàng.thank m,n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác AEHF ta có
^AEH + ^AFH = 1800
mà 2 góc này đối
Vậy tứ giác AEHF là tứ giác nt 1 đường tròn
Xét tứ giác AEDB có
^AEB = ^ADB = 900
mà 2 góc này kề, cùng nhìn cạnh AB
Vậy tứ giác AEDB là tứ giác nt 1 đường tròn
b, ^ACK = 900 ( góc nt chắn nửa đường tròn )
Xét tam giác ABD và tam giác AKC có
^ABC = ^AKC (góc nt chắn cung AC)
^ADB = ^ACK = 900
Vậy tam giác ABD ~ tam giác AKC (g.g)
\(\dfrac{AB}{AK}=\dfrac{AD}{AC}\Rightarrow AB.AC=AD.AK\)
a: góc BHD+góc BMD=180 độ
=>BHDM nội tiếp
b: BHDM nội tiếp
=>góc HDM+góc HBM=180 độ
=>góc ADM=góc ABC
=>góc ADM=góc ADC
=>DA là phân giáccủa góc MDC
c: Xét tứ giác DHNC có
góc DHC=góc DNC=90 độ
=>DHNC nội tiếp
=>góc NHD=góc NDC
góc NHD+góc MHD
=180 độ-góc NCD+góc MBD
=180 độ+180 độ-góc ABD-góc ACD
=180 độ
=>M,H,N thẳng hàng
a: góc BEH+góc BFH=90 độ
=>BEHF nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
Xét ΔABK vuông tại B và ΔAFC vuông tại F có
góc AKB=góc ACF
=>ΔABK đồng dạng với ΔAFC
Lời giải:
a) Tứ giác $AFHE$ có tổng 2 góc đối nhau $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.
b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)
Xét tam giác $ABD$ và $AKC$ có:
$\widehat{ADB}=\widehat{ACK}=90^0$
$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)
$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)
$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$
$\Rightarrow AB.AC=AD.AK$ (đpcm)
ΔPKN đồng dạng với ΔPMA
=>góc PKN=góc PMH
=>AKNM nội tiếp
mà góc ANH=góc AMH=90 độ
nên ANHM nội tiếp đường tròn đường kính AH
=>góc AKH=góc ANH
=>AK vuông góc KH
Kẻ đường kính AI' của (O)
=>I'K vuông góc AK
=>K,H,I' thẳng hàng
AC vuông góc CI'; AB vuông góc BI'
=>CI'//BH và BI'//CH
=>BHCI' là hình bình hành
=>K,H,I thẳng hàng