K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔPKN đồng dạng với ΔPMA

=>góc PKN=góc PMH

=>AKNM nội tiếp

mà góc ANH=góc AMH=90 độ

nên ANHM nội tiếp đường tròn đường kính AH

=>góc AKH=góc ANH

=>AK vuông góc KH

Kẻ đường kính AI' của (O)

=>I'K vuông góc AK

=>K,H,I' thẳng hàng

AC vuông góc CI'; AB vuông góc BI'

=>CI'//BH và BI'//CH

=>BHCI' là hình bình hành

=>K,H,I thẳng hàng

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

10 tháng 3 2022

Giúp với ạ em cho 100 tim

10 tháng 3 2022

a, Xét tứ giác AEHF ta có 

^AEH + ^AFH = 1800

mà 2 góc này đối 

Vậy tứ giác AEHF là tứ giác nt 1 đường tròn 

Xét tứ giác AEDB có 

^AEB = ^ADB = 900

mà 2 góc này kề, cùng nhìn cạnh AB 

Vậy tứ giác AEDB là tứ giác nt 1 đường tròn 

b, ^ACK = 900 ( góc nt chắn nửa đường tròn ) 

Xét tam giác ABD và tam giác AKC có 

^ABC = ^AKC (góc nt chắn cung AC) 

^ADB = ^ACK = 900

Vậy tam giác ABD ~ tam giác AKC (g.g) 

\(\dfrac{AB}{AK}=\dfrac{AD}{AC}\Rightarrow AB.AC=AD.AK\)

 

a: góc BHD+góc BMD=180 độ

=>BHDM nội tiếp

b: BHDM nội tiếp

=>góc HDM+góc HBM=180 độ

=>góc ADM=góc ABC

=>góc ADM=góc ADC

=>DA là phân giáccủa góc MDC

c: Xét tứ giác DHNC có

góc DHC=góc DNC=90 độ

=>DHNC nội tiếp

=>góc NHD=góc NDC

góc NHD+góc MHD

=180 độ-góc NCD+góc MBD

=180  độ+180 độ-góc ABD-góc ACD

=180 độ

=>M,H,N thẳng hàng

a: góc BEH+góc BFH=90 độ

=>BEHF nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

Xét ΔABK vuông tại B và ΔAFC vuông tại F có

góc AKB=góc ACF

=>ΔABK đồng dạng với ΔAFC

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

a) Tứ giác $AFHE$ có tổng 2 góc đối nhau  $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.

b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)

Xét tam giác $ABD$ và $AKC$ có:

$\widehat{ADB}=\widehat{ACK}=90^0$

$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)

$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)

$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$

$\Rightarrow AB.AC=AD.AK$ (đpcm)

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Hình vẽ:

undefined