Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trình bày bài giải tính nhanh
1/1x3+1/3x5+1/5x7+1/7x9...........1/101x103
\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.+\frac{1}{101}-\frac{1}{103}\right)\)
\(\frac{1}{2}\left(1-\frac{1}{103}\right)=\frac{1}{2}\cdot\frac{100}{103}=\frac{50}{103}\)
xong r đó
Ta có:
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{101.103}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{101.103}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{103}\right)=\frac{50}{103}\)
\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.+\frac{1}{101}-\frac{1}{103}\right)\)
\(\frac{1}{2}\left(1-\frac{1}{103}\right)=\frac{1}{2}\cdot\frac{100}{103}=\frac{50}{103}\)
xong r đó
Ta có:
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{101.103}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{101.103}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{103}\right)=\frac{50}{103}\)