cho đa thức: f(x)=x^2+xa+b.biết |f(x)|<=1/2 mọi x thỏa mãn -1<hoặc=x<hoặc=1. tìm a,b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=-5(mik chx chắc âu nha~)
nếu đúng thì chúc bn hok tốt, còn ko thì thui zậy:))
Bài 1:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\left(-1\right)^3+a\cdot\left(-1\right)^2+b\cdot\left(-1\right)-2=0\\1^3+a\cdot1^2+b\cdot1-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=3\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Vậy: \(f\left(x\right)=x^3+2x^2-x-2\)
Đặt f(x)=0
\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
=>Nghiệm còn lại là x=-2
a) Ta có: \(f\left(x\right)=5x^4+x^3-x+11+x^4-5x^3\)
\(=\left(5x^4+x^4\right)+\left(x^3-5x^3\right)-x+11\)
\(=6x^4-4x^3-x+11\)
Ta có: \(g\left(x\right)=2x^2+3x^4+9-4x^2-4x^3+2x^4-x\)
\(=\left(3x^4+2x^4\right)-4x^3+\left(2x^2-4x^2\right)-x+9\)
\(=5x^4-4x^3-2x^2-x+9\)
b) Ta có: h(x)=f(x)-g(x)
\(=6x^4-4x^3-x+11-5x^4+4x^3+2x^2+x-9\)
\(=x^4+2x^2+2\)
a. Ta có: f(0) = 02 - 4 = 0 - 4 = -4
f(2) = 22 - 4 = 4 - 4 = 0
f(-1) = (-1)2 - 4 = -1 - 4 = -5
b. Ngiệm của đa thức f(x) là 2 (vì f(2) = 0)
a) f(x) =\(^{x^2}\)-4
Thay x=o vào đa thức ta được
f(0)=\(0^2\)-4=-4
Thay x=2 vào đa thức ta được
f(2) =\(2^2\)-4=0
Thay x=-1 vào đa thức ta được
f(-1) =\(-1^2\)-4 =-3
f(-1)=2 và f(1)=12
=>1-a+b=2 và 1+a+b=12
=>-a+b=1 và a+b=11
=>b=6 a=5
=>f(x)=x^2+5x+6
f(x)=0
=>(x+2)(x+3)=0
=>x=-2 hoặc x=-3