2010×2011-1945/2010×2010+65=?
Tui biết nhưng thích hỏi:))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 2011=t
\(\Rightarrow T=\sqrt{1+\left(t-1\right)^2+\frac{\left(t-1\right)^2}{t^2}}+\frac{t-1}{t}\)
\(=\sqrt{\frac{t^2+t^2\left(t-1\right)^2+\left(t-1\right)^2}{t^2}}+\frac{t-1}{t}\)
\(=\frac{\sqrt{t^2+t^4-2t^3+t^2+t^2-2t+1}+t-1}{t}\)
\(=\frac{\sqrt{t^4+t^2+1+2t^2-2t^3-2t}+t-1}{t}\)
\(=\frac{\sqrt{\left(t^2-t+1\right)^2}+t-1}{t}\)
\(=\frac{t^2-t+1+t-1}{t}=t=2011\)
mà \(2011\in Z\)
nên T là một số nguyên.
A = \(\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)
Ta có:
\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)
Từ 3 điều trên suy ra : A < B
2010 × 2011 - 1945 / 2010 × 2010 + 65
= 2010 × 2010 + ( 2010 - 1945) / 2010 × 2010 + 65
= 2010 × 2010 + 65 / 2010 × 2010 + 65
= 1
Sĩ thế