Giải hệ phương trình sau
\(\left\{{}\begin{matrix}x+3y=x\left(5y-1\right)\\\dfrac{1}{x}-\dfrac{3}{y}=-2\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hệ sau :
Câu a :
\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy ...........................
Câu b :
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
Vậy..................
\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)
a: \(\left\{{}\begin{matrix}3x-2y=11\\4x-5y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=11+2y\\4x-5y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y+\dfrac{11}{3}\\4\left(\dfrac{2}{3}y+\dfrac{11}{3}\right)-5y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y+\dfrac{11}{3}\\\dfrac{8}{3}y+\dfrac{44}{3}-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}y+\dfrac{11}{3}\\-\dfrac{7}{3}y=3-\dfrac{44}{3}=-\dfrac{35}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=5\\x=\dfrac{2}{3}\cdot5+\dfrac{11}{3}=\dfrac{10}{3}+\dfrac{11}{3}=\dfrac{21}{3}=7\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}+1\\5x-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\5\left(\dfrac{2}{3}y+2\right)-8y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\\dfrac{10}{3}y+10-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{14}{3}y=3-10=-7\\x=\dfrac{2}{3}y+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=7:\dfrac{14}{3}=7\cdot\dfrac{3}{14}=\dfrac{3}{2}\\x=\dfrac{2}{3}\cdot\dfrac{3}{2}+2=3\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x+8\\3x+5\left(2x+8\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2x+8\\3x+10x+40=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x+8\\13x=-39\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-3\\y=2\cdot\left(-3\right)+8=8-6=2\end{matrix}\right.\)
d: \(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{2}{3}\\x+y-10=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y\\x+y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3}y+y=10\\x=\dfrac{2}{3}y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{5}{3}y=10\\x=\dfrac{2}{3}y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=\dfrac{2}{3}\cdot6=4\end{matrix}\right.\)
Điều kiện \(\left\{{}\begin{matrix}\dfrac{4x-3x^2y-9xy^2}{x+3y}\ge0\\x+3y\ne0\end{matrix}\right.\)
Với \(3y\ge x\), hệ tương đương:
\(\left\{{}\begin{matrix}\left(x^4-2x^2+4\right)\left(x^2+2\right)=6x^5y\\\left(3y-x\right)^2=\dfrac{4x}{x+3y}-3xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^6+8=6x^5y\left(1\right)\\x^3+27y^3=4x\end{matrix}\right.\left(I\right)\)
Vì \(x=0\) thì hệ vô nghiệm nên \(x\ne0\), khi đó:
\(\left(I\right)\Leftrightarrow\left\{{}\begin{matrix}1+\dfrac{8}{x^6}=\dfrac{6y}{x}\\1+\dfrac{27y^3}{x^3}=\dfrac{4}{x^2}\end{matrix}\right.\)
Đặt \(\dfrac{3y}{x}=a,\dfrac{2}{x^2}=b\) ta được hệ:
\(\Leftrightarrow\left\{{}\begin{matrix}1+a^3=2b\\1+b^3=2a\end{matrix}\right.\)
Giải hệ này ta được \(a=b\Leftrightarrow\dfrac{3y}{x}=\dfrac{2}{x^2}\Leftrightarrow y=\dfrac{2}{3x}\)
\(\left(1\right)\Leftrightarrow x^6-4x^4+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\\x=\sqrt{1+\sqrt{5}}\\x=-\sqrt{1+\sqrt{5}}\end{matrix}\right.\)
TH1: \(x=\sqrt{2}\Rightarrow y=\dfrac{\sqrt{2}}{3}\)
TH2: \(x=-\sqrt{2}\Rightarrow y=-\dfrac{\sqrt{2}}{3}\)
TH3: \(x=\sqrt{1+\sqrt{5}}\Rightarrow y=\dfrac{2}{3\sqrt{1+\sqrt{5}}}\)
TH4: \(x=-\sqrt{1+\sqrt{5}}\Rightarrow y=-\dfrac{2}{3\sqrt{1+\sqrt{5}}}\)
Đối chiếu với các điều kiện ta được \(\left(x;y\right)=\left(-\sqrt{1+\sqrt{5}};-\dfrac{2}{3\sqrt{1+\sqrt{5}}}\right)\)
a: =>xy-2x+2y-4=xy+y và 5xy+10x+y+2=5xy-10x-2y+4
=>-2x+y=4 và 20x+3y=2
=>x=-5/13; y=42/13
b: =>4x+2|y|=8 và 4x-3y=1
=>2|y|-3y=7 và 4x-3y=1
TH1: y>=0
=>2y-3y=7 và 4x-3y=1
=>-y=7 và 4x-3y=1
=>y=-7(loại)
TH2: y<0
=>-2y-3y=7 và 4x-3y=1
=>y=-7/5; 4x=1+3y=1-21/5=-16/5
=>x=-4/5; y=-7/5
Bài 2:
a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)
\(=5m^2-2m+9>0\forall m\)
Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m
Bài 1:
ĐKXĐ \(2x\ne y\)
Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)
HPT trở thành
\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)
=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64
=>3x+2y=94 và 2x+2y=68
=>x=26 và x+y=34
=>x=26 và y=8
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)
=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)
=>x+1=18/35; y+4=9/13
=>x=-17/35; y=-43/18
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=3\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)\(\left(Đk:x,y\ne-1\right)\)
\(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=3\\\dfrac{2x}{x+1}+\dfrac{6y}{y+1}=-2\end{matrix}\right.\)
\(\Rightarrow\dfrac{5y}{y+1}=-5\)
\(\Leftrightarrow5y=-5y-5\)
\(\Leftrightarrow10y=-5\)
\(\Leftrightarrow y=-\dfrac{1}{2}\Rightarrow x=-2\)
<=>\(\dfrac{2x}{x+1}-\dfrac{x}{x+1}=4< =>x-4x=4< =>x=-\dfrac{4}{3}\Rightarrow y=-\dfrac{1}{4}\)
`{(x+3y=x(5y-1)),(1/x-3/y=-2):}` `ĐK: x; y ne 0`
`<=>{(x+3y=5xy-x),(-3x+y=-2xy):}`
`<=>{(5xy-2x=3y),(-3x+y=-2xy):}`
`<=>{(x(5y-2)=3y),(-3x+y=-2xy):}`
`<=>{(x=[3y]/[5y-2]),(-3x+y=-2xy):}` `ĐK: y ne 2/5` (TH `y=2/5` ko t/m)
`<=>{(x=[3y]/[5y-2]),(-3[3y]/[5y-2]+y=-2[3y]/[5y-2]y):}`
`<=>{(x=[3y]/[5y-2]),(-9y+5y^2-2y=-6y^2):}`
`<=>{(x=[3y]/[5y-2]),(11y^2-11y=0):}`
`<=>{(x=[3y]/[5y-2]),([(y=0(ko t//m)),(y=1(t//m)):}):}`
`<=>{(x=[3. 1]/[5.1-2]=1),(y=1):}` (t/m)