Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài hai cạnh góc vuông của tam giác lần lượt là a và b. Gọi c là độ dài cạnh huyền (a, b, c > 0)
Đáp án B
Cạnh goc vuông lớn là : 120 : (5 + 3) x 5 = 75 m
Cạnh goc vuông bé : 120 - 75 = 45 m
DT tam giác : 75 x 45 : 2 = 1687,5 m2
Gọi hai cạnh góc vuông là x và y.
ta có:
x/3 = y/4
x2 + y2 = 102 (*)
Đặt x/3 = y/4 = t
⇒ x = 3 . t và y = 4 . t
Thay x, y vào (*) ta có:
(3 . t)2 + (4 . t)2 = 102
[32 + 42] . t2 = 102
t2 = 4
⇒ t = 2
⇒ x = 3 . 2 = 6 và y = 4 . 2 = 8
(chắc vậy -_-)
câu 2
Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
Đáp án C
Gọi tam giác vuông đã cho là tam giác ABC vuông tại A; AB < AC và đường cao AH.
Theo giả thiết tỉ số hai cạnh góc vuông là 3 : 4 nên
Do đó, AB = 3.25 = 75 cm và AC = 4.25 = 100cm
Gọi cạnh góc vuông bé là \(x\) ( cm) ; \(x\) > 0
Thì cạnh góc vuông lớn là \(x\times\) 3 = 3\(x\)
Diện tích của tam giác vuông khi đó là: 3\(x\) \(\times\) \(x\) = 3\(x^2\)
Theo bài ra ta có: 3\(x^2\) = 150 ⇒ \(x^2\) = 150 : 3 ⇒ \(x^2\) = 50
Theo py ta go ta có:
Độ dài cạnh huyền là: \(\sqrt{x^2+\left(3x\right)^2}\) = \(\sqrt{10x^2}\) = \(\sqrt{10.50}\) = 10\(\sqrt{5}\)
Kết luận độ dài cạnh huyền là: 10\(\sqrt{5}\)(cm)