1. Cho a, b là 2 sô thoả mãn đẳng thức 2a2 +1/a2 +b2/4 =4. Tính giá trị a, b để ab đạt giá trị nhỏ nhất
2. tìm nghiệm nguyên của phương trình x+y=xy
3. Chứng minh: a+b<= căn(2(a2+b2)) với mọi a,b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Bài 2:
Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001
=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996
2M= ( a+b-2)2 + (a-1)2 +(b-1)2 + 3996
=> MinM = 1998 tại a=b=1
Câu 3:
Ta có: P= x2 +xy+y2 -3.(x+y) + 3
=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)
2P = ( x+y-2)2 +(x-1)2+(y-1)2
=> MinP = 0 tại x=y=1
P = x4.y4 + x4 + y4 + 1
Ta có: x2 + y2 = (x + y)2 - 2xy = 10 - 2xy => x4 + y4 = (x2 + y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2
=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)2 + 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]2 + 10.(xy - 2)2 + 45
=> P > 45
Dấu "=" xảy ra <=> xy = 2
Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y2 - \(\sqrt{10}\).y + 2 = 0
\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
vậy P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\); \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
P = x4.y4 + x4 + y4 + 1
Ta có: x2 + y2 = (x + y)2 - 2xy = 10 - 2xy => x4 + y4 = (x2 + y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2
=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)2 + 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]2 + 10.(xy - 2)2 + 45
=> P > 45
Dấu "=" xảy ra <=> xy = 2
Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y2 - \(\sqrt{10}\).y + 2 = 0
\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
vậy P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\); \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
1.TA CO A^2 + B^2/4 >=AB ... 4- (A^2+1/A^2)>=AB . VOI A^2>=0 TACO A^2 +1/A^2 >=2 ... - (A^2+1/A^2)<=-2 SUYRA AB<= - (A^2+1/A^2)+4 <=-2+4 HAY AB<=2 . MAX AB=2 KHI A=1 , B=2A=2 2.XY-X-Y=0...XY-X-Y+1=1...X(Y-1)-(Y-1)=1...(X-1)(Y-1)=1. Vi X,Y NGUYEN NEN X-1 , Y-1 NGUYEN ...(X-1)(Y-1)=1.1= -1 .-1. VS X-1=1,Y-1=1 SUYRA X=Y=2...VS X-1=-1,Y-1=-1 SUYRA X=Y=0
1) \(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)
\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2\ge0\)
hay \(ab\le2\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\a=\frac{b}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)
2)
\(PT\Leftrightarrow\left(1-x\right)\left(y-1\right)=-1=1.\left(-1\right)=\left(-1\right).1\)
Xét các Th
3) bunyakovsky