K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2023

\(\dfrac{1}{3\times9}+\dfrac{1}{9\times15}+\dfrac{1}{15\times21}+\dfrac{1}{21\times27}+...+\dfrac{1}{39\times45}\)
\(=\dfrac{1}{6}\times\left(\dfrac{6}{3\times9}+\dfrac{6}{9\times15}+\dfrac{6}{15\times21}+\dfrac{6}{21\times27}+...+\dfrac{6}{39\times45}\right)\)
\(=\dfrac{1}{6}\times\left(\dfrac{1}{3}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{27}+...+\dfrac{1}{39}-\dfrac{1}{45}\right)\)
\(=\dfrac{1}{6}\times\left(\dfrac{1}{3}-\dfrac{1}{45}\right)\)
\(=\dfrac{1}{6}\times\dfrac{14}{45}\)
\(=\dfrac{7}{135}\)
#AvoidMe

=1/6(6/3*9+6/9*15+...+6/39*45)

=1/6(1/3-1/9+1/9-1/15+...+1/39-1/45)

=1/6*14/45

=14/270=7/135

\(a)\)

\(\frac{1}{x+1}-\frac{x-1}{x}=\frac{3x+1}{x\left(x+1\right)}\)

\(\Leftrightarrow x-x^2+1=3x+1\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(b)\)

\(\frac{\left(x+2\right)^2}{2x-3}-\frac{1}{1}=\frac{x^2+10}{2x-3}\)

\(\Leftrightarrow x^2+4x+4-2x-3=x^2+10\)

\(\Leftrightarrow x^2+2x+1=x^2+10\)

\(\Leftrightarrow2x-9=0\)

\(\Leftrightarrow2x=9\)

\(\Leftrightarrow x=\frac{2}{9}\)

NV
21 tháng 7 2021

Đặt \(A=x+\dfrac{1}{x}\)

\(A=\left(\dfrac{x}{25}+\dfrac{1}{x}\right)+\dfrac{24}{25}x\ge2\sqrt{\dfrac{x}{25x}}+\dfrac{24}{25}.5=\dfrac{26}{5}\)

\(A_{min}=\dfrac{26}{5}\) khi \(x=5\)

18 tháng 2 2019

12x+3.23=23.x-4.32

12x+3.8=8.x-4.9

12x+24=8x-36

12x-8x=36-24

4x=12

x=12:4=3

18 tháng 2 2019

      \(12x+3\cdot2^3=2^3x-4\cdot3^2\)

\(\Rightarrow12x+24=8x-36\)

\(\Rightarrow12x-8x=-36-24\)

\(\Rightarrow4x=-60\)

\(\Rightarrow x=-15\)

Vay x=-15

\(2^x:1+2^x:2+...+2^x:49=2^{49}-1\)

\(2^x.1+2^x.\frac{1}{2}+...+2^x.\frac{1}{49}=2^{49}-1\)

\(2^x.\left(1+\frac{1}{2}+...+\frac{1}{49}\right)=2^{49}-1\)

3 tháng 3 2020

Đặt: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\)

=> \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\)

=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{49}}\right)\)

=> \(A=1-\frac{1}{2^{49}}=\frac{2^{49}-1}{2^{49}}\)

\(2^{x-1}+2^{x-2}+2^{x-3}+...+2^{x-49}=2^{49}-1\)

<=> \(\frac{2^x}{2}+\frac{2^x}{2^2}+\frac{2^x}{2^3}+...+\frac{2^x}{2^{49}}=2^{49}-1\)

<=> \(2^x\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\right)=2^{49}-1\)

<=> \(2^x.\frac{2^{49}-1}{2^{49}}=2^{49}-1\)

<=> \(2^x=2^{49}\)

<=> x = 49.

11 tháng 2 2018

Gọi S có n số hạng sao cho S = 1+ 2+ 3 + ...+ n = aaa ( a là chữ số)
\(\Rightarrow\)(n + 1).n : 2 = a.111
\(\Rightarrow\) n(n + 1) = a.222
\(\Rightarrow\) n(n + 1) = a.2.3.37
a là chữ số mà n; n + 1 là hai số tự nhiên liên tiếp nên a = 6
\(\Rightarrow\)n(n + 1) = 36.37 \(\Rightarrow\) n = 36
Vậy cần 36 số hạng.

11 tháng 2 2018

cần 36 số hạng nha bn 

3 tháng 2 2020

Trả lời :

Mk giúp bn câu a ) thôi mà sai thì thôi nhé :)))

a, \(\left|x\right|+\left|y\right|=0\)

\(\Leftrightarrow x=0;y=0\) \(\Rightarrow\left|x\right|+\left|y\right|=0\)

Vậy x = 0 ; y = 0

_Học tốt

3 tháng 2 2020

câu a,b,c dạng tương tự nhau nha nên mình làm câu a

a)\(\left|x\right|+\left|y\right|=0\left(1\right)\)

Ta có: \(\hept{\begin{cases}\left|x\right|\ge0;\forall x,y\\\left|y\right|\ge0;\forall x,y\end{cases}\Rightarrow}\left|x\right|+\left|y\right|\ge0;\forall x,y\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\hept{\begin{cases}\left|x\right|=0\\\left|y\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)

Vậy \(\left(x,y\right)=\left(0;0\right)\)

d) \(\left|x^2+1\right|=12\left(1\right)\)

Ta thấy \(x^2\ge0;\forall x\)

\(\Rightarrow x^2+1\ge1>0;\forall x\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x^2+1=12\)

                      \(\Leftrightarrow x^2=11\)

                      \(\Leftrightarrow x=\pm\sqrt{11}\)

Vậy \(x=\pm\sqrt{11}\)