Phân tích a^3+b^3+c^3-3abc thế từ đó suy ra điều kiện của a,b,c để a^3+b^3+c^3=3abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(a^3+c^3=\left(a+c\right)^3-3ac\left(a+c\right)\)
nên \(a^3+c^3-b^3+3abc=\left(a+c\right)^3-b^3-3ac\left(a+c-b\right)\)
\(=\left(a+c-b\right)\left[\left(a+c\right)^2+b\left(a+c\right)+b^2-3ac\right]=\left(a+c-b\right)\left(a^2+b^2+c^2+ab+bc-ac\right)\)
b. tương tự ta có :
\(a^3-b^3-c^3-3abc=a^3-\left(b+c\right)^3+3bc\left(b+c-a\right)\)
\(=\left(a-b-c\right)\left[a^2+a\left(b+c\right)+\left(b+c\right)^2-3bc\right]=\left(a-b-c\right)\left(a^2+b^2+c^2+ab+ac-bc\right)\)
c. ta có : \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=\left(x-z+z-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=\left(x-z\right)^3+3\left(x-z\right)\left(z-y\right)\left(x-y\right)+\left(z-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=3\left(x-z\right)\left(z-y\right)\left(x-y\right)\)
\(a^3+b^3+c^3-3abc=1\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1\) (1)
Do \(a^2+b^2+c^2-ab-bc-ca>0\Rightarrow a+b+c>0\)
(1)\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca+\dfrac{1}{a+b+c}\)
\(\Leftrightarrow3a^2+3b^2+3c^2=\left(a+b+c\right)^2+\dfrac{1}{a+b+c}\ge3\)
\(\Rightarrow a^2+b^2+c^2\ge1\)
Bạn có thể giải thích phần (1) <=> với cái đó được ko. Mình vẫn chưa hiểu mấy bước sau lắm
M = (a + b + c)3 - a3 - b3 - c3
= (a + b)3 + c3 + 3(a + b)2c + 3(a + b)c2 - a3 - b3 - c3
= a3 + b3 + c3 + 3a2b + 3ab2 + 3(a + b)c(a + b + c) - a3 - b3 - c3
= 3ab (a + b) + 3c(a + b)(a + b + c)
= 3(a + b)[ab + c(a + b + c)]
= 3(a + b)(ab + bc + ac + c2)
= 3(a + b)[b(a + c) + c(a + c)]
= 3(a + b)(b + c)(c + a)
N = a3 + b3 + c3 - 3abc
= (a + b)3 + c3 - 3ab(a + b) - 3abc
= (a + b + c)3 - 3(a + b)c(a + b + c) - 3ab(a + b + c)
= (a + b + c)[(a + b + c)2 - 3(a + b)c - 3ab]
= (a + b + c)(a2 + b2 + c2 + 2ab + 2bc + 2ca - 2ac - 3bc - 3ab)
= (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
2: =abc-bc-ab-ac+a+b+c-1
=bc(a-1)-ab+b-ac+c+a-1
=bc(a-1)-b(a-1)-c(a-1)+(a-1)
=(a-1)(bc-b-c+1)
=(a-1)(b-1)(c-1)
\(B=a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)=ab^3-ac^3+bc^3-ba^3+ca^3-cb^3=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left(-a^2b+ab^2-c^3+a^2c+abc+b^2c\right)\)
\(C=ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)=ab\left(a+b\right)-bc\left(a+b-a+c\right)+ac\left(a-c\right)=ab\left(a+b\right)-bc\left(a+b\right)+bc\left(a-c\right)+ac\left(a-c\right)=b\left(a+b\right)\left(a-c\right)+c\left(a-c\right)\left(a+b\right)=\left(a+b\right)\left(a-c\right)\left(b+c\right)\)
\(D=ab\left(a+b\right)+bc\left(b+c\right)+ac\left(c+a\right)+3abc=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ac\left(c+a\right)+abc=ab\left(a+b+c\right)+bc\left(a+b+c\right)++++ac\left(a+b+c\right)=\left(a+b+c\right)\left(ab+bc+ca\right)\)
D=ab(a+b)+bc(b+c)+ac(c+a)+3abc
= ab(a+b)+abc+bc(b+c)+abc+ac(c+a)+abc
= ab(a+b+c)+bc(b+c+a)+ac(c+a+b)
=( ab+bc+ac)(a+b+c)
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)
ta có : \(a^3+b^3+c^3=3abc\Rightarrow a=b=c\)
\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2.2.2=8\)
a) \(x^2+2x+1=x^2+x+x+1=x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x+1\right)=\left(x+1\right)^2\) *Câu này có thể áp dụng hằng đẳng thức \(a^2+2ab+b^2=\left(a+b\right)^2\) cho nhanh*
b) \(a^3-b^3+c^3+3abc=\left(a^3-3a^2b+3ab^2-b^2\right)+3a^2b-3ab^2+c^3+3abc\)
\(=\left(a-b\right)^3+c^3+\left(3a^2b-3ab^2+3abc\right)\)
\(=\left(a-b+c\right)\left[\left(a-b\right)^2-\left(a-b\right)c+c^2\right]+3ab\left(a-b+c\right)\)
\(=\left(a-b+c\right)\left(a^2-2ab+b^2-ac+bc+c^2+3ab\right)\)
\(=\left(a-b+c\right)\left(a^2+b^2+c^2-ac+bc+ab\right)\)
c) \(a^3-b^3-c^3-3abc=\left[a^3-3a^2b+3ab^2-b^3\right]+3a^2b-3ab^2-c^3-3abc\)
\(=\left[\left(a-b\right)^3-c^3\right]+3ab\left(a-b-c\right)=\left(a-b-c\right)\left[\left(a-b\right)^2+\left(a-b\right)c+c^2\right]+3ab\left(a-b-c\right)\)
\(=\left(a-b-c\right)\left[a^2-2ab+b^2+ac-bc+c^2+3ab\right]=\left(a-b-c\right)\left(a^2+b^2+c^2+ab+ac-bc\right)\)
a,(x+1)2
b,(a+c-b).{(a+c)^2+(a+c)b+b^2-3ac}
c,(a-c-b).{(a-c)^2+(a-c)b+b^2+3ac}
\(a^3+b^3+c^3-3abc\) \(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ca-bc-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Vậy \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
Vậy để \(a^3+b^3+c^3=3abc\) thì \(a+b+c=0\) hoặc \(a=b=c\)