gải bpt và biểu diễn tập nghiệm trên trục số
5x+2<3x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{x+2}{x-3}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2>0\\x-3< 0\end{matrix}\right.\Leftrightarrow-2< x< 3\)
Vậy: S={x|-2<x<3}
a) |x-7|=2x+3 (1)
Ta có:|x-7|=x-7<=>x-7 \(\ge\) 0<=>x\(\ge\)7
|x-7|=-(x-7)<=>x-7<0<=>x<7
Nếu x\(\ge\) 7thì (1) <=>x-7=2x+3
<=>x-2x=7+3
<=>-x = 10
<=>x=-10 (ko thỏa mãn đk)
Nếu x<7 thì (1) <=>-(x-7)=2x+3
<=>-x+7=2x+3
<=>-x-2x=-7+3
<=>-3x=-4
<=>x=4/3 (thỏa mãn đk)
\(\Leftrightarrow\frac{2x+1-6x+4}{4}-\frac{1}{4}\ge0\Leftrightarrow\frac{-4x+4}{4}\ge0\Rightarrow-4\left(x-1\right)\ge0\left(4>0\right)\Rightarrow x-1\le0\left(-4
Xét \(x^2-5x+4\le0\Leftrightarrow1\le x\le4\Rightarrow D_1=\left[1;4\right]\)
Xét \(x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-m^2-1\right)\le0\)
- Nếu \(\left|m\right|\ge1\Rightarrow D_2=\left[2;m^2+1\right]\)
- Nếu \(\left|m\right|< 1\Rightarrow D_2=\left[m^2+1;2\right]\)
Do \(2\in\left[1;4\right]\), để \(D=D_1\cap D_2\) là 1 đoạn có độ dài bằng 1
\(\Leftrightarrow\left[{}\begin{matrix}m^2+1=1\\m^2+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\pm\sqrt{2}\end{matrix}\right.\)
\(\frac{2-x}{3}< \frac{3-2x}{5}+\frac{1}{3}\)
\(\Leftrightarrow5\left(2-x\right)< 3\left(3-2x\right)+5\)
\(\Leftrightarrow10-5x< 9-6x+5\)
\(\Leftrightarrow10-5x< -6x+14\)
\(\Leftrightarrow x< 4\)
Vậy bất phương trình có tập nghiệm là: S ={x| x < 4}
#Học tốt!
\(5x+2< 3x-2\\ \Leftrightarrow5x-3x< -2-2\\ \Leftrightarrow2x< -4\\ \Leftrightarrow x< -2\)
Vậy \(S=\left\{x|x< -2\right\}\)
sớm lên thượng tá nhé