Cho hcn ABCD có AB=16cm,BC=12cm.Gọi H là chân đường vuông góc kẻ từ A xuống BD
a) CM: tg AHB ~ tam giác BCD
b) Tính độ dài đoạn thẳng BD,AH và BH
c) Kẻ tia phân giác của góc BAD cắt BD tại M. Tính AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)
Do đó: ΔAHB~ΔBCD
b: ta có: ΔABD vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD^2=12^2+5^2=169\)
=>\(BD=\sqrt{169}=13\left(cm\right)\)
Xét ΔABD vuông tại A có AH là đường cao
nên \(AH\cdot BD=AB\cdot AD\)
=>\(AH\cdot13=12\cdot5=60\)
=>\(AH=\dfrac{60}{13}\left(cm\right)\)
c: Xét ΔBCD có CE là phân giác
nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(1)
Xét ΔHAB vuông tại H và ΔADB vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHAB~ΔADB
=>\(\dfrac{HA}{AD}=\dfrac{HB}{AB}\)
=>\(\dfrac{HA}{HB}=\dfrac{AD}{AB}=\dfrac{BC}{CD}\left(2\right)\)
Từ (1),(2) suy ra \(\dfrac{EB}{ED}=\dfrac{HA}{HB}\)
=>\(EB\cdot HB=HA\cdot ED\)
a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//DC)
Do đó: ΔAHB\(\sim\)ΔBCD(g-g)
b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)
nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)
Ta có: ΔAHB\(\sim\)ΔBCD(cmt)
nên \(\dfrac{AH}{BC}=\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AH}{HB}=\dfrac{BC}{CD}\)(2)
Từ (1) và (2) suy ra \(\dfrac{AH}{HB}=\dfrac{EB}{ED}\)
hay \(AH\cdot ED=HB\cdot EB\)(đpcm)
a, Xét tam giác AHB và tam giác BCD, có:
AHB = BCD = 90o
B1 = B2
=> Tam giác AHB ~ tam giác BCD (g_g)
b, Theo ý a, ta có:
Tam giác AHB ~ tam giác BCD => AH/BC = AB/BD
=> AH = AB.BC/BD = 12.9/15 = 7,2 cm
=> AH = 7,2 cm
c, Vì BD là đường chéo hình chữ nhật ABCD nên B1 = B2 = D1 = D2
Xét tam giác AHB và tam giác DHA, có
AHB = DHA = 90o
D1 = B1 (cmt)
=> Tam giác AHB ~ tam giác DHA (g_g)
=> AH/BH = DH/AH (dpcm)
a. có AB // DC (gt)=> góc ABD= góc BDC ( 1 góc sole trong)
Xét 2 tam giác ABH và BDC có:
g ABD= g BDC ( cmt)
g AHD= g BCD =90 độ
=> 2 tg đồng dạng
b. xét tam giác ABD có g A = 90 độ (gt)
=> AD^2+AB^2=DB^2 ( đ/n Py ta go)
=>DB=\(\sqrt{\left(16^2+12^2\right)}\)
=> DB= 20
có tg AHB~ tg BCD( cmt)
=> \(\dfrac{AH}{BC}=\dfrac{AB}{DC}\)=> \(\dfrac{AH}{12}=\dfrac{16}{20}\)=> AH=\(\dfrac{16\cdot12}{20}\)=9.6
BH tính tương tự
c. chưa nghĩ ra
a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
góc ABH = góc BDC(hai góc so le trong, AB//DC)
góc BCD = góc AHB(hai góc vuông)
Do đó: ΔAHB∼ΔBCD(g-g)
b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)
nên \(\dfrac{EB}{ED}\)=\(\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)
Ta có: ΔAHB∼∼ΔBCD(cmt)
nên\(\dfrac{AH}{BC}\)=\(\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)
hay\(\dfrac{AH}{BH}\)=\(\dfrac{BC}{CD}\)(2)
Từ (1) và (2) suy ra \(\dfrac{AH}{BH}\)=\(\dfrac{EB}{ED}\)
hay AH⋅ED=HB⋅EB(đpcm)
a,Xét \(\Delta AHB\) và \(\Delta BCD\) có :
\(\widehat{H}=\widehat{C}=90^0\)
\(\widehat{ABH}=\widehat{BDC}\left(ABCD\cdot là\cdot HCN,slt\right)\)
\(\Rightarrow\Delta AHB\sim\Delta BCD\left(g-g\right)\)
b, Ta có : \(\Delta AHB\sim\Delta BCD\left(cmt\right)\)
\(\Rightarrow\dfrac{AH}{BC}=\dfrac{HB}{DC}\)
\(\Rightarrow\dfrac{AH}{HB}=\dfrac{BC}{DC}\left(1\right)\)
Ta có : EC là phân giác \(\widehat{BCD}\)
\(\Rightarrow\dfrac{EB}{ED}=\dfrac{BC}{CD}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\dfrac{AH}{HB}=\dfrac{EB}{ED}\)
\(\Rightarrow AH.ED=HB.EB\left(ĐPCM\right)\)
c, Xét ΔABD vuông tại A, định lý Pi-ta-go ta được :
\(\Rightarrow BD=\sqrt{AD^2+AB^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
Xét \(\Delta HDA\) và \(\Delta ADB\) có :
\(\widehat{A}=\widehat{AHB}=90^0\)
\(\widehat{D}:chung\)
\(\Rightarrow\Delta HDA\sim\Delta ADB\left(g-g\right)\)
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AD}{BD}\)
hay \(\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow AH=\dfrac{4.3}{5}=2,4\left(cm\right)\)
Xét ΔAHD vuông tại H, định lí Pi-ta-go ta được :
\(\Rightarrow DH=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)
Ta có : EC là phân giác \(\widehat{BCD}\)
\(\Rightarrow\dfrac{EB}{ED}=\dfrac{BC}{DC}\)
hay \(\dfrac{EB}{ED}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{EB}{3}=\dfrac{ED}{4}=\dfrac{EB+ED}{3+4}=\dfrac{5}{7}\)
\(\Rightarrow EB=\dfrac{5}{7}.3=\dfrac{15}{7}\left(cm\right)\)
Ta có : \(EH=BD-DH-EB=5-1,8-\dfrac{15}{7}=\dfrac{37}{35}\) (cm)
\(\Rightarrow S_{AHE}=\dfrac{2,8.\dfrac{37}{35}}{2}=1,48\left(cm^2\right)\)
a, Vì ABCD là hình chữ nhật nên AB// DC => góc ABD = BDC ( hai góc đối đỉnh)
Xét tam giác AHB và tam giác BCD có
góc AHB = góc BCD =90 ĐỘ
góc ABD = BDC ( cmtrên)
Suy ra .............( g.g)
Vì ABCD là hcn nên AB =DC =20
BC=AD=15
Theo định lí Pitago trong tam giác BCD
\(BD^2=BC^2+DC^2\)
\(BD^2=20^2+15^2\)
\(BD^2=625\)
BD = 25
Theo a ta có \(\frac{AH}{AB}=\frac{BC}{BD}\)
NÊN \(AH=\frac{AB\cdot BC}{BD}\)
\(AH=\frac{20\cdot15}{25}\)
AH=12
c, d tự trả lời
e hình như dựa một chút vào tình chất đường phân giác trong tam giác
Bài 2:
a:
BC=20cm
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/12=CD/16
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó: BD=60/7(cm); CD=80/7(cm)
b: Xét ΔABC có DE//AB
nên DE/AB=CD/BC
=>DE/12=4/7
hay DE=48/7(cm)
mik cần câu c thôi