hộp thứ 1 chứa 5 viên bi trắng và 4 viên bi xanh . hộp thứ 2 chứa 7 viên bi trắng và 5 viên bi xanh . người ta lấy ngẫu nhiên 1 viên bi từ hộp thứ 1 vào hộp thứ 2 rồi sau đó từ hộp thứ 2 lấy ngẫu nhiên ra 2 viên bi . tính xác suất để 2 viên bi lấy được từ hộp thứ 2 là 2 viên bi trắng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega \right) = C_7^2.C_7^2 = 441\)
a) Biến cố “Bốn viên bi lấy ra có cùng màu” xảy ra khi mỗi lần lấy từ 2 hộp đều là hai viên bi xạnh hoặc hai viên bi đỏ. Số kết quả thuận lợi cho biến cố là \(C_4^2.C_5^2 + C_3^2.C_2^2 = 63\)
Vậy xác suất của biến cố “Bốn viên bi lấy ra có cùng màu” là \(P = \frac{{63}}{{441}} = \frac{1}{7}\)
b) Số kết quả thuận lợi cho biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là \(C_4^1.C_3^1.C_2^2 + C_3^2.C_5^1.C_2^1 = 42\)
Vậy xác suất của biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là: \(P = \frac{{42}}{{441}} = \frac{2}{{21}}\)
c) Gọi A là biến cố “Trong 4 viên bi lấy ra có đủ cả bi xanh và bi đỏ”, ta có biến cố đối là \(\overline A \): “4 viên bi lấy ra chỉ có một màu”
\(\overline A \) xảy ra khi 2 lần lấy ra đều được các viên bi cùng màu xanh hoặc cùng màu đỏ
Từ câu a) ta có xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{1}{7}\)
Suy ra, xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{7} = \frac{6}{7}\)
Không gian mẫu: \(C_9^1.C_8^1=72\)
a. Lấy được 2 bi trắng khi bi lấy ra từ cả 2 hộp đều trắng
Số biến cố thuận lợi: \(C_5^1.C_6^1=30\)
Xác suất: \(P=\dfrac{30}{72}=...\)
b. Số cách lấy cả 2 có ít nhất 1 vàng: \(72-30=42\)
Xác suất: \(P=\dfrac{42}{72}=...\)
Tổng số bi trong 5 hộp ban đầu là: 14 + 18 + 21 + 24 + 35 = 112 (viên bi)
Sau khi lấy ngẫu nhiên một hộp, trong 4 hộp còn lại có số bi trắng gấp 3 lần số bi xanh nên tổng số bi của 4 hộp còn lại phải chia hết cho 4.
Do tổng số bi ban đầu là 112 mà 112 chia hết cho 4 nên hộp bi được lấy ra có số hòn bi là một số chia hết cho 4.
Trong các số: 14, 18, 21, 24 và 35 thì chỉ số 24 chia hết cho 4 nên hộp thứ tư đã được lấy ra.
có một hộp viên bi xanh 1 viên bi đỏ 1 viên bi vàng và 1 viên bi có kích thước và khối lượng như nhau mỗi lần An lấy một viên bi ra và ghi lại một 1 viên bi sau đó lại bỏ bi vào hộp sau 30 lần liên tiếp lấy bi có 9 lần xuất hiện bi màu đỏ , 10 lần xuất hiện bi màu vàng Tính xác suất trực nghiệm xuất hiện bi màu xanh
`\Omega_1=C_9 ^1=9`
`\Omega_2=C_13 ^2=78`
`@TH1:`
Gọi `A:`"Lấy từ hộp thứ nhất viên bi trắng."
`=>A=C_5 ^1=5`
`=>P(A)=5/9`
Gọi `B:`" Lấy từ hộp thứ hai `2` viên bi trắng."
`=>B=C_8 ^2=28`
`=>P(B)=5/9 . 28/78=70/351`
`@TH2:`
Gọi `C:`"Lấy từ hộp thứ nhất viên bi xanh."
`=>C=C_4 ^1=4`
`=>P(C)=4/9`
Gọi `D:`" Lấy từ hộp thứ hai `2` viên bi trắng."
`=>D=C_7 ^2=21`
`=>P(D)=4/9 . 21/78=14/117`