K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì (d)//y=2x+1 nên m-1=2

=>m=3

=>y=2x+n

Thay x=2 và y=0 vào (d), ta được:

n+4=0

=>n=-4

24 tháng 12 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Điểm M có tung độ y = 1 nên hoành độ là

Để học tốt Toán 9 | Giải bài tập Toán 9

Điểm N có tung độ y = 1 nên hoành độ là

Để học tốt Toán 9 | Giải bài tập Toán 9

20 tháng 11 2019

Điểm M có tung độ y = 1 nên hoành độ là

Để học tốt Toán 9 | Giải bài tập Toán 9

Điểm N có tung độ y = 1 nên hoành độ là

Để học tốt Toán 9 | Giải bài tập Toán 9

 

5 tháng 9 2019

Chọn B.

Phương pháp: Tham số hóa điểm M và N

Do đó:

 

1 tháng 10 2019

11 tháng 12 2021

b: (d'): y=ax+b

Vì (d')//(d) nên a=-2

Vậy: (d'): y=-2x+b

Thay x=-5 và y=0 vào (d'), ta được:

b+10=0

hay b=-10

25 tháng 3 2022

1) y= 2x-4

HD: y=ax+b

.... song song: a=2 và b≠-1

..... A(1;-2)  => x=1 và y=-2 và Δ....

a+b=-2

Hay 2+b=-2 (thay a=2) 

<=> b=-4

KL:................

2) Xét PT hoành độ giao điểm của (P) và (d)

x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)

*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.

*) Theo hệ thức Viet ta có: 

S=x1+x2=2(m-1) và P=x1.x2=m-3

*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

Thay S và P vào M ta có:

\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)

 

Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)\(\dfrac{15}{4}\)

Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0

 

8 tháng 7 2021

a) Vì (d) song song với đường thẳng \(y=-2x+2003\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne2003\end{matrix}\right.\)

\(\Rightarrow\left(d\right):y=-2x+b\)

Vì (d) cắt trục hoành tại điểm có hoành độ = 1

\(\Rightarrow\) tọa độ điểm đó là \(\left(1;0\right)\)

\(\Rightarrow1=b\Rightarrow\left(d\right):y=-2x+1\)

b) pt hoành độ giao điểm: \(-\dfrac{1}{2}x^2=-2x+2\Rightarrow\dfrac{1}{2}x^2-2x+2=0\)

\(\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\Rightarrow y=-\dfrac{1}{2}.2^2=-2\)

\(\Rightarrow\) tọa độ giao điểm là \(\left(2;-2\right)\)