Nhập tin nhắn...
Cho tam giác ABC vuông tại A. Lấy điểm M trên cạnh BC sao cho BA=BM. Từ M kẻ đg vuông góc vs BC cắt Ac tại điểm H và cắt AB tại điểm K
a, CMR: tam giác ABH= tam giác MBH
b, CMR: AC=Mk
c, CMR: HB + Hk > 2HM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Câu 1,2 của bài này na ná với nhau á, bạn tham khảo:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-tren-canh-bc-lay-d-d-khong-trung-b-va-bdbc2-tren-tia-doi-cua-tia-cb-lay-e-sao-cho-bdce-cac-duong-vuong-goc-voi-bc-ke-tu-d-va-e-cat-duong-thang-ab-va-ac-lan-luot-tai.4784314158042
c. -Kẻ tia phân giác của \(\widehat{BAC}\) cắt đường vuông góc với MN (tại I) tại F.
-Xét △ABF và △ACF:
\(AB=AC\) (△ABC cân tại A).
\(\widehat{BAF}=\widehat{CAF}\) (AF là tia phân giác của \(\widehat{BAC}\))
AF là cạnh chung.
\(\Rightarrow\)△ABF=△ACF (c-g-c).
\(\Rightarrow BF=CF\) (2 cạnh tương ứng).
\(\widehat{ABF}=\widehat{ACF}\) (2 góc tương ứng).
-Xét △MIF và △NIF:
\(MI=IN\left(cmt\right)\)
\(\widehat{MIF}=\widehat{NIF}=90^0\)
IF là cạnh chung.
\(\Rightarrow\)△MIF=△NIF (c-g-c).
\(\Rightarrow MF=NF\) (2 cạnh tương ứng).
-Xét △BMF và △CNF:
\(BM=NC\)(△MBD=△NCE)
\(MF=NF\left(cmt\right)\)
\(BF=CF\left(cmt\right)\)
\(\Rightarrow\)△BMF=△CNF (c-c-c).
\(\Rightarrow\widehat{MBF}=\widehat{NCF}\) (2 cạnh tương ứng).
Mà \(\widehat{MBF}=\widehat{MCF}\)(cmt)
\(\Rightarrow\widehat{NCF}=\widehat{MCF}\)
Mà \(\widehat{NCF}+\widehat{MCF}=180^0\) (kề bù)
\(\Rightarrow\widehat{NCF}=\widehat{MCF}=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow\)AB⊥BF tại B.
\(\Rightarrow\) F là giao của đường vuông góc với AB tại B và tia phân giác của góc \(\widehat{BAC}\).
\(\Rightarrow\)F cố định.
-Vậy đường thẳng vuông góc với MN luôn đi qua điểm cố định khi D thay đổi trên đoạn BC.
a: Xét ΔABH và ΔKBH có
BA=BK
BH chung
HA=HK
Do đó: ΔBAH=ΔBKH
=>\(\widehat{BHA}=\widehat{BHK}\)
mà \(\widehat{BHA}+\widehat{BHK}=180^0\)(hai góc kề bù)
nên \(\widehat{BHA}=\widehat{BHK}=\dfrac{180^0}{2}=90^0\)
=>BH\(\perp\)AK tại H
=>AK\(\perp\)BI tại H
b: Sửa đề: KA là phân giác của góc IKD
Xét ΔIAK có
IH là đường trung tuyến
IH là đường cao
Do đó: ΔIAK cân tại I
Ta có: DK//AC
=>\(\widehat{DKA}=\widehat{KAI}\)
mà \(\widehat{KAI}=\widehat{IKA}\)(ΔIAK cân tại I)
nên \(\widehat{DKA}=\widehat{IKA}\)
=>KA là phân giác của góc DKI
a. Xét \(\Delta ABH\) và \(\Delta MBH\) có:
BA=BM do gt
\(\widehat{BAH}=\widehat{BMH}=90^0\)
BH là cạnh huyền chung
Do đó: \(\Delta ABH=\Delta MBH\) theo trường hợp ch-cgv