K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

23 tháng 9 2019

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

 

8 tháng 11 2017

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

11 tháng 1 2017

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

+ BD = AC = √ (82 + 82) = 8√ 2 ( cm ) ⇒ AO = BO = CO = DO = 4√ 2 ( cm )

Do đó:

+ Diện tích xung quanh của hình chóp đều là Sxq = p.d = p.OB = 16.4√ 2 = 64√ 2 ( cm2 ).

+ Diện tích toàn phần của hình chóp đều là

Stp = Sxq + SABCD = 64√ 2 + 82 = 64 + 64√ 2 ( cm2 )

+ Thể tích của hình chóp đều là V = 1/3S.h = 1/3.SABCD.SO = 1/3.82.10 = 640/3( cm3 )

13 tháng 1 2018

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

22 tháng 6 2017

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

 

a: Gọi O là tâm của hình vuông ABCD

S.ABCD là tứ giác đều có O là tâm của đáy ABCD

=>SO là trung đoạn và SO vuông góc (ABCD)

ABCD là hình vuông

=>\(AC=BD=\sqrt{12^2+12^2}=12\sqrt{2}\left(cm\right)\)

=>\(OA=OB=OC=OD=6\sqrt{2}\left(cm\right)\)

ΔSOA vuông tại O

=>SO^2+OA^2=SA^2

=>\(SO^2=10^2-\left(6\sqrt{2}\right)^2=100-72=28\)

=>\(SO=2\sqrt{7}\left(cm\right)\)

b: \(S_{xq}=\dfrac{C_{đáy}}{2}\cdot SO\)

\(=2\sqrt{7}\cdot\left(12\cdot\dfrac{4}{2}\right)=2\sqrt{7}\cdot24=48\sqrt{7}\left(cm^2\right)\)

\(S_{tp}=48\sqrt{7}+12^2=48\sqrt{7}+144\left(cm^2\right)\)

18 tháng 8 2023

a.

Độ dài trung đoạn của hình chóp là:

\(\sqrt{12^2-10^2}=2\sqrt{11}\left(cm\right)\)

b.

Diện tích xung quanh của hình chóp là:

\(S_{xq}=\dfrac{8.4}{2}.2\sqrt{11}.\dfrac{1}{2}=16\sqrt{11}\left(cm^2\right)\)

Diện tích toàn phần của hình chóp là:

\(S_{tp}=16\sqrt{11}+12^2=197\left(cm^2\right)\)

1 tháng 5 2023

Cần gấp ạaaaa

1 tháng 5 2023

loading...

Của cậu nek!!!

7 tháng 8 2019

Giải bài 40 trang 121 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi H là trung điểm của CD

Vì ΔSCD cân tại S, có SH là đường trung tuyến nên đồng thời là đường cao

⇒ SH ⊥ CD.

Ta có:

Giải bài 40 trang 121 SGK Toán 8 Tập 2 | Giải toán lớp 8

Chu vi đáy là: 4. 30 = 120 (cm)

Diện tích xung quanh của hình chóp:

Giải bài 40 trang 121 SGK Toán 8 Tập 2 | Giải toán lớp 8

Diện tích đáy: Sd = 302 = 900 (cm2)

Diện tích toàn phần của hình chóp:

Stp = Sxq + Sd = 1200 + 900 = 2100 (cm2)