Cho hình thang ABCD có 2 đáy là AB và CD. Đoạn thẳng AC cắt đoạn thẳng BD tại O.
a) So sánh diện tích tam giác DAO và tam giác BCD.
b) Biết diện tích tam giác BAO bằng 1 cm và diện tích tam giác DOC bằng 4 cm. Tính diện tích hình ABCD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD=1/2
=>S OAD=1/2*S OCD=2cm2; S BOC=2cm2
=>S ABCD=1+2+2+4=9cm2
c: AB/CD=OA/OC=1/2
a: Xét ΔOBA và ΔODC có
góc OBA=góc ODC
góc BOA=góc DOC
=>ΔOBA đồng dạng với ΔODC
=>OB/OD=OA/OC=AB/CD=1/3
=>S ABO=1/3*S ABC
=>S BOC=2/3*S ABC
b: Kẻ CH vuông góc AB
=>S ABC=1/2*CH*AB
S ABCD=1/2*CH*(AB+CD)
=>S ABC/S ABCD=AB/(AB+CD)
b: XétΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
=>\(S_{BOC}=2\cdot S_{BOA}=2\left(cm^2\right)=S_{AOD}\)
=> S ABCD=1+4+2+2=9cm2
ụa , tui tưởng toán lớp 5