Tính:
a. ( 2x2 + 3y )3
b. \(\left(\frac{1}{2}x-3\right)^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, (x+2y)^3 = x^3 + 6x^2y + 12xy^2 + 8y^3`
`b, (3y-1)^3 = 27y^3 - 27y^2 + 3y-1`
`a)`
`(x + 2y)^3`
`= x^3 + 6x^2y + 12xy^2 + 8y^3`
`b)`
`(3y - 1)^3`
`= 27y^3 - 27y^2 + 9y - 1`
a: \(=\dfrac{5}{3}x^2-x+\dfrac{1}{3}\)
b: \(=-5y-9+xy\)
a)
\(\begin{array}{l}{\left( {1 + \frac{1}{2} - \frac{1}{4}} \right)^2}.\left( {2 + \frac{3}{7}} \right)\\ = {\left( {\frac{4}{4} + \frac{2}{4} - \frac{1}{4}} \right)^2}.\left( {\frac{{14}}{7} + \frac{3}{7}} \right)\\ = {\left( {\frac{5}{4}} \right)^2}.\frac{{17}}{7}\\ = \frac{{25}}{{16}}.\frac{{17}}{7}\\ = \frac{{425}}{{112}}\end{array}\)
b)
\(\begin{array}{l}4:{\left( {\frac{1}{2} - \frac{1}{3}} \right)^3}\\ = 4:{\left( {\frac{3}{6} - \frac{2}{6}} \right)^3}\\ = 4:{\left( {\frac{1}{6}} \right)^3}\\ = 4:\frac{1}{{216}}\\ = 4.216\\ = 864\end{array}\)
a)\({\left( {\frac{2}{5} + \frac{1}{2}} \right)^2} = {\left( {\frac{4}{{10}} + \frac{5}{{10}}} \right)^2} = {\left( {\frac{9}{{10}}} \right)^2} = \frac{{81}}{{100}}\);
b)\({\left( {0,75 - 1\frac{1}{2}} \right)^3} = {\left( {\frac{3}{4} - \frac{3}{2}} \right)^3} = {\left( {\frac{3}{4} - \frac{6}{4}} \right)^3} = {\left( { - \frac{3}{4}} \right)^3} = \frac{{ - 27}}{{64}};\)
c)
\(\begin{array}{l}{\left( {\frac{3}{5}} \right)^{15}}:{\left( {0,36} \right)^5} = {\left( {\frac{3}{5}} \right)^{15}}:{\left( {\frac{9}{{25}}} \right)^5}\\ = {\left( {\frac{3}{5}} \right)^{15}}:{\left[ {{{\left( {\frac{3}{5}} \right)}^2}} \right]^5} = {\left( {\frac{3}{5}} \right)^{15}}:{\left( {\frac{3}{5}} \right)^{10}} = {\left( {\frac{3}{5}} \right)^5}\end{array}\)
d) \({\left( {1 - \frac{1}{3}} \right)^8}:{\left( {\frac{4}{9}} \right)^3} = {\left( {\frac{3}{3} - \frac{1}{3}} \right)^8}:{\left( ({\frac{2}{3}})^2 \right)^3}\\= {\left( {\frac{2}{3}} \right)^8}:{\left( {\frac{2}{3}} \right)^6} = {\left( {\frac{2}{3}} \right)^{8-6}}\\= {\left( {\frac{2}{3}} \right)^2} = \frac{4}{9}\)
a)
\(\begin{array}{l}\left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{5}{6} - \frac{4}{7}} \right)\\ = \left( {\frac{{ - 3}}{7}} \right) + \frac{5}{6} - \frac{4}{7}\\ = \left[ {\left( {\frac{{ - 3}}{7}} \right) - \frac{4}{7}} \right] + \frac{5}{6}\\ =\frac{-7}{7}+\frac{5}{6}\\= - 1 + \frac{5}{6}\\ = \frac{{ - 1}}{6}\end{array}\)
b)
\(\begin{array}{l}\frac{3}{5} - \left( {\frac{2}{3} + \frac{1}{5}} \right)\\ = \frac{3}{5} - \frac{2}{3} - \frac{1}{5}\\ = (\frac{3}{5} - \frac{1}{5}) - \frac{2}{3}\\ = \frac{2}{5} - \frac{2}{3}\\ = \frac{6}{{15}} - \frac{{10}}{{15}}\\ = \frac{{ - 4}}{{15}}\end{array}\)
c)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{3}} \right) + 1} \right] - \left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{3}} \right) + 1 - \frac{2}{3} + \frac{1}{5}\\ = \left( {\frac{{ - 1}}{3} - \frac{2}{3}} \right) + 1 + \frac{1}{5}\\ = \frac{-3}{3}+1+\frac{1}{5}\\= - 1 + 1 + \frac{1}{5}\\ = \frac{1}{5}\end{array}\)
d)
\(\begin{array}{l}1\frac{1}{3} + \left( {\frac{2}{3} - \frac{3}{4}} \right) - \left( {0,8 + 1\frac{1}{5}} \right)\\ = 1 + \frac{1}{3} + \frac{2}{3} - \frac{3}{4} - \left( {\frac{4}{5} + 1 + \frac{1}{5}} \right)\\=1+\frac{3}{3}-\frac{3}{4}-(\frac{5}{5}+1)\\ = 1 + 1 - \frac{3}{4} - (1+1)\\ = - \frac{3}{4}\end{array}\).
a: \(\left(\dfrac{1}{5}\right)^{-2}=25\)
b: \(4^{\dfrac{3}{2}}=8\)
c: \(\left(\dfrac{1}{8}\right)^{-\dfrac{2}{3}}=\left(\dfrac{1}{2}\right)^{3\cdot\dfrac{-2}{3}}=\left(\dfrac{1}{2}\right)^{-2}=4\)
d: \(\left(\dfrac{1}{16}\right)^{-0.75}=\left(\dfrac{1}{2}\right)^{4\cdot\left(-0.75\right)}=\left(\dfrac{1}{2}\right)^{-3}=8\)
a)
\(\begin{array}{l}\left( {\frac{3}{4}:1\frac{1}{2}} \right) - \left( {\frac{5}{6}:\frac{1}{3}} \right)\\ = \left( {\frac{3}{4}:\frac{3}{2}} \right) - \left( {\frac{5}{6}.3} \right)\\ = \left( {\frac{3}{4}.\frac{2}{3}} \right) - \frac{5}{2}\\ = \frac{1}{2} - \frac{5}{2}\\ = \frac{-4}{2}\\= - 2.\end{array}\)
b)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{5}} \right):\frac{1}{{10}}} \right] - \frac{5}{7}.\left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{5}} \right).10 - \frac{5}{7}.\left( {\frac{{10}}{{15}} - \frac{3}{{15}}} \right)\\ = - 2 - \frac{5}{7}.\frac{7}{{15}}\\ = - 2 - \frac{1}{3}\\ = \frac{{ - 6}}{3} - \frac{1}{3}\\ = \frac{{ - 7}}{3}\end{array}\)
c)
\(\begin{array}{l}\left( { - 0,4} \right) + 2\frac{2}{5}.{\left[ {\left( {\frac{{ - 2}}{3}} \right) + \frac{1}{2}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left[ {\left( {\frac{{ - 4}}{6}} \right) + \frac{3}{6}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left( {\frac{{ - 1}}{6}} \right)^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.\frac{1}{{36}}\\ = \left( { - \frac{2}{5}} \right) + \frac{1}{{15}}\\ = \left( { - \frac{6}{{15}}} \right) + \frac{1}{{15}}\\ = \frac{{ - 5}}{{15}}\\ = \frac{{ - 1}}{3}\end{array}\)
d)
\(\begin{array}{l}\left\{ {\left[ {{{\left( {\frac{1}{{25}} - 0,6} \right)}^2}:\frac{{49}}{{125}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 1}}{3}} \right) + \frac{1}{2}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{1}{{25}} - \frac{3}{5}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 2}}{6}} \right) + \frac{3}{6}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{{ 1}}{{25}}-\frac{15}{25}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\left[ {{{\left( {\frac{{ - 14}}{{25}}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\frac{{196}}{{{{25}^2}}}.\frac{{25.5}}{{49}}.\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left( {\frac{{4.49.25.5.5}}{{{{25}^2}.49.6}}} \right) - \frac{1}{6}\\ = \frac{4}{6} - \frac{1}{6}\\ = \frac{3}{6}\\ = \frac{1}{2}\end{array}\)
a)
\(\left( { - 3,5} \right).\left( {1\frac{3}{5}} \right) = \frac{{ - 7}}{2}.\frac{8}{5} = \frac{{ - 7.8}}{{2.5}} = \frac{{ - 7.4.2}}{{2.5}} = \frac{{ - 28}}{5}\)
b) \(\frac{{ - 5}}{9}.\left( { - 2\frac{1}{2}} \right) = \frac{{ - 5}}{9}.\frac{{ - 5}}{2} = \frac{{25}}{{18}}\)
a)
\(\begin{array}{l}1\frac{1}{2} + \frac{1}{5}.\left[ {\left( { - 2\frac{5}{6} + \frac{1}{3}} \right)} \right]\\ = \frac{3}{2} + \frac{1}{5}.\left[ {\left( { - \frac{{17}}{6} + \frac{2}{6}} \right)} \right]\\ = \frac{3}{2} + \frac{1}{5}.\frac{{ - 15}}{6}\\ = \frac{3}{2} + \frac{{ - 1}}{2}\\ = \frac{2}{2}\\=1\end{array}\)
b)
\(\begin{array}{l}\frac{1}{3}.\left( {\frac{2}{5} - \frac{1}{2}} \right):{\left( {\frac{1}{6} - \frac{1}{5}} \right)^2}\\ = \frac{1}{3}.\left( {\frac{4}{{10}} - \frac{5}{{10}}} \right):{\left( {\frac{5}{{30}} - \frac{6}{{30}}} \right)^2}\\ = \frac{1}{3}.\frac{{ - 1}}{{10}}:{\left( {\frac{{ - 1}}{{30}}} \right)^2}\\ = \frac{{ - 1}}{{30}}:\frac{1}{{{{30}^2}}}\\ = \frac{{ - 1}}{{30}}{.30^2}\\ = - 30\end{array}\)
cái này là hằng đẳng thức đáng nhớ phải ko nhỉ:
a) (2x2 + 3y)3 = (2x2)3 + 3 . (2x2)2 . 3y + 3 . 2x2 . (3y)2 + (3y)3
= 8x6 + 36x4y + 54x2y2 + 27y3
b) \(\left(\frac{1}{2}x-3\right)^3=\left(\frac{1}{2}x\right)^3-3\cdot\left(\frac{1}{2}x\right)^2\cdot3+3\cdot\frac{1}{2}x\cdot3^2-3^3\)
\(=\frac{1}{8}x^3-\frac{9}{4}x^2+\frac{27}{2}x-27\)