K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

\(A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{-\left(x-3\right)}{x+3}.\frac{\left(x+3^2\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(-1+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{-x-3+x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(-\frac{3}{x+3}\right).\frac{x+3}{3x^2}\)

\(A=-x^2\)

5 tháng 3 2020

\(ĐKXĐ:x\ne\pm3\)

\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)

11 tháng 8 2017

\(A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\left[\frac{-\left(x-3\right)}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right].\frac{x+3}{3x^2}\)

\(=\left[\frac{-\left(x-3\right)\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)^2}+\frac{x}{x+3}\right].\frac{x+3}{3x^2}\)

\(=\left(-1+\frac{x}{x+3}\right).\frac{x+3}{3x^2}\)

\(=\frac{-x-3+x}{x+3}.\frac{x+3}{3x^2}=\frac{-3}{x+3}.\frac{x+3}{3x^2}=\frac{-1}{x^2}\)

b ) Để \(A=-\frac{1}{x^2}< 0\forall x\ne0\)  

Vậy \(x\ne0\) thì \(A< 0\)

10 tháng 8 2017

\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}\)

\(=\frac{\left(x+2\right)\left(x+3\right)+x\sqrt{\left(3-x\right)\left(3+x\right)}}{x\left(3-x\right)+\left(x+2\right)\sqrt{\left(3-x\right)\left(3+x\right)}}\)

\(=\frac{\left(x+2\right)\left(x+3\right)+x\sqrt{\left(3-x\right)\left(3+x\right)}}{x\left(3-x\right)+\left(x+2\right)\sqrt{\left(3-x\right)\left(3+x\right)}}\)

\(=\frac{\sqrt{3+x}\left(\left(x+2\right)\sqrt{x+3}+x\sqrt{3-x}\right)}{\sqrt{3-x}\left(\left(x+2\right)\sqrt{x+3}+x\sqrt{3-x}\right)}\)

\(=\frac{\sqrt{3+x}}{\sqrt{3-x}}\)

10 tháng 8 2017

\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right)\sqrt{x^2-6x+8}}\)

\(=\frac{\left(x-3\right)\left(x-2\right)+3\sqrt{\left(x-4\right)\left(x-2\right)}}{3\left(x-4\right)+\left(x-3\right)\sqrt{\left(x-4\right)\left(x-2\right)}}\)

\(=\frac{\sqrt{x-2}\left(\left(x-3\right)\sqrt{x-2}+3\sqrt{x-4}\right)}{\sqrt{x-4}\left(3\sqrt{x-4}+\left(x-3\right)\sqrt{x-2}\right)}\)

\(=\frac{\sqrt{x-2}}{\sqrt{x-4}}\)

18 tháng 12 2017

M = \(\left(\frac{x}{x-3}-\frac{x+3}{3x^2-6x-9}+\frac{1}{3x+3}\right)\)\(\frac{x^2-2x-3}{x^2+x+2}\)

\(\left(\frac{x\left(3x+3\right)}{3\left(x-3\right)\left(x+1\right)}-\frac{x+3}{3\left(x-3\right)\left(x+1\right)}+\frac{x-3}{3\left(x+1\right)\left(x-3\right)}\right)\)\(\frac{\left(x+1\right)\left(x-3\right)}{x^2+x+2}\)

=  \(\frac{3\left(x^2+x-2\right)}{3\left(x-3\right)\left(x+1\right)}\)*  \(\frac{\left(x+1\right)\left(x-3\right)}{x^2+x+2}\)  = \(\frac{x^2+x-2}{x^2+x+2}\)

Ta thấy   x2 + x - 2  <   x2 + x + 2

nên M < 1