rút gọn : T= { 1/2 +1 } . { 1/3 +1 } . { 1/4 +1 } ... { 1/98 +1 } . { 1/99 +1 }
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T= (1/2+ 1).(1/3+ 1) .(1/4+ 1)....(1/98+ 1). (1/99+ 1)
T= 3/2+4/3+5/4+...+99/98+100/99
T= 100/2
T= 50
tính riêng:
\(\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\)
=\(\left(\frac{100}{99}-1\right)+\left(\frac{100}{98}-1\right)+\left(\frac{100}{97}-1\right)+...+\left(\frac{100}{2}-1\right)+99\)
=\(100.\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)+99-98\)
=\(100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)\)
vậy \(\left(\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=100\)
chúc bạn học tốt ^^
\(T=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)+...+\left(\frac{1}{99}+1\right)\)
\(T=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(T=\frac{1}{2}.100\)
\(T=50\)
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(=\frac{\left(101+1\right).100:2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)
\(=\frac{5050}{1+1+...+1+1}\)(51 chữ số 1)
= \(\frac{5050}{51}\)
\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)
\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)
\(\Rightarrow2B-B=\left[1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\right]-\left[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\right]\)
\(\Rightarrow B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(T=\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)....\left(\frac{1}{99}+1\right)\)
\(T=\left(\frac{1}{2}+\frac{2}{2}\right).\left(\frac{1}{3}+\frac{3}{3}\right).\left(\frac{1}{4}+\frac{4}{4}\right)......\left(\frac{1}{99}+\frac{99}{99}\right)\)
\(T=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}......\frac{100}{99}=\frac{3.4.5.6.....100}{2.3.4.5...99}=\frac{100}{2}=50\)
Vậy T = 50
T={1/2 + 1} .{1/3+1} . {1/4+1}....{ 1/98+1].[1/99+1}
=3/2 . 4/3 . 5/4.....99/98 . 100/99
=1/2 . 1 . 1.....1. 100/1 (MIK RÚT GỌN CHÉO CÁC PHÂN SỐ LIỀN NHAU)
=100/2
=50 Nhé