chung minnh tam giac BNC BANG TAM GIAC CMB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Tam giác ABC cân tại A => AB = AC
=>AB/2 = AC/2
=> NB=MC
Xét tam giác BNC và tam giác CMB có
NB = MC ( cmt)
góc B = góc C
BC cạnh chung
=> tam giác BNC = tam giác CMB ( cạnh - góc - cạnh )
Mệt quá câu A thôi nha !
Hì, mik cx đag k bt lm 1 bài gần giống như thế này, nếu mak mik lm đc bài của mik. Thì mik sẽ giải bài cho bn. Đc k
Xét tam giác ABCABC có phân giác AN=BPAN=BP. Kẻ MN∥AB,PQ∥ABMN∥AB,PQ∥AB. Ta sẽ chứng minh PQ≡MNPQ≡MN
Thật vậy, dễ dàng chứng minh AM=MN,PQ=QBAM=MN,PQ=QB
Xét 2 tam giác cân AMNAMN và PQBPQB có cạnh đáy bằng nhau mà MN>PQMN>PQ (ko mất tính tq, giả sử MNMN gần ABAB hơn PQPQ)
⇒∠PQB>∠NMA⇒∠PQB>∠NMA
⇒∠MAB<∠NBA⇒∠MAB<∠NBA
⇒AM<BN⇒AM<BN
Mà ta lại có AM=MN>PQ=QB>BNAM=MN>PQ=QB>BN (vô lý)
⇒MN≡PQ⇒MN≡PQ
còn lai tu lam nhé!
1.c/m tam giac ABE đồng dạng với tam giác ACF
xét 2 tam giác ABE va tam giác ACF có
goc AEB=goc AFC
góc A chung
suy ra tam giác ABE đồng dạng với tam giác ACF(g,g)
2.c/m HE.HB=HC.HF
xét 2 tam giác EHC và FHB có
goc HEC=goc HFB
góc EHC=góc FHB(đ đ)
suy ra 2 tam giác EHC đồng dạng với tam giác FHB
nên ta có EH/FH=HC/HB=EC/FB
mà EH/FH=HC/HB suy ra EH.HB=HC.HF(ĐPCM)
cho lời nhân xét nhé
1. c/m tam giác ACF đồng dạng tam giác ABE
xét tam giác ACF và tam giác ABE
có góc AEB=góc AFC
góc A chung
suy ra tam giác ACF đồng dạng với tam giác ABE(g.g)
2. c/m HE.HB=HC.HF
Xét 2 tam giác HEC và tam giác HFB
Có góc HEC= góc HFB
góc EHC=góc FHB(đ.đ)
suy ra tam giác HEC đồng dạng với tam giác HFB
Nên ta có HE/HF=HC/HB=EC/FB
Suy ra HE.HB=HF.HC(đpcm)
cho mk lời nhận xét nhé