K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAC có BA=BC và góc ABC=60 độ

nên ΔABC đều

=>\(S_{ABC}=\dfrac{a^2\sqrt{3}}{4}\)

=>\(S_{ABCD}=\dfrac{a^2\sqrt{3}}{2}\)

27 tháng 5 2018

14 tháng 11 2019

27 tháng 2 2023

đề yêu cầu gì vậy em

NV
26 tháng 2 2023

Đề bài thiếu dữ liệu định vị điểm S (ví dụ SC bằng bao nhiêu đó) nên ko thể tính góc giữa SB và (ABCD)

25 tháng 11 2021

Có: (SC, (ABCD)) = ∠SCB

Gọi: \(O=AC\cap BD\)

Có: \(OC=\dfrac{1}{2}AC=\dfrac{3}{2}a\)

\(OB=\dfrac{1}{2}BD=\dfrac{5}{2}a\)

Xét tam giác OBC vuông tại O (Do: ABCD là hình thoi nên AC ⊥ BD), có:

\(BC=\sqrt{OB^2+OC^2}=\dfrac{a\sqrt{34}}{2}\)

Xét tam giác SBC vuông tại B (Do: SB ⊥ (ABCD) ), có:

\(SB=BC.tan60^o=\dfrac{a\sqrt{102}}{2}\)

\(\Rightarrow V_{SABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{102}}{2}.\dfrac{1}{2}.3a.5a=\dfrac{5a^3\sqrt{102}}{4}\left(đvtt\right)\)

17 tháng 5 2018

Đáp án A

Trong mặt phẳng  dựng đường thẳng đi qua A và vuông góc vưới SB tại K

Ta chứng minh được

NV
27 tháng 3 2021

Do O là giao điểm 2 đường chéo \(\Rightarrow\) O là trung điểm AC và BD

Tam giác SAC cân tại S \(\Rightarrow SO\) là trung tuyến đồng thời là đường cao

\(\Rightarrow SO\perp AC\) (1)

Tương tự ta có \(SO\perp BD\) (2)

(1); (2) \(\Rightarrow SO\perp\left(ABCD\right)\)

b. Ta có \(AC\perp BD\) nên tam giác OBC vuông tại O

\(\Rightarrow OE=BE=\dfrac{1}{2}BC\) (trung tuyến ứng với cạnh huyền)

Mà \(\widehat{BCD}=\widehat{BAD}=60^0\Rightarrow\Delta BCD\) đều

\(\Rightarrow BD=BC\Rightarrow OB=BE=\dfrac{1}{2}BC\Rightarrow OB=OE=BE\)

\(\Rightarrow\Delta OBE\)  đều \(\Rightarrow OF\perp BC\) (trung tuyến tam giác đều đồng thời là đường cao)

Mà \(SO\perp\left(ABCD\right)\Rightarrow SO\perp BC\)

\(\Rightarrow BC\perp\left(SOF\right)\Rightarrow\left(SBC\right)\perp\left(SOF\right)\)