cho đa thức M(x)=ax\(^2\) 2+5x-3. Tìm hệ số a biết rằng M(x)chia hết cho x=12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nghiệm của đa thức M(x) là \(\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{2}\) để đa thức M(x) = 0
Thay \(x=\dfrac{1}{2}\), ta có:
\(a.\left(\dfrac{1}{2}\right)^2+5.\dfrac{1}{2}-3=0\\ \Rightarrow\dfrac{1}{4}a+\dfrac{5}{2}=3\\ \Rightarrow\dfrac{1}{4}a=3-\dfrac{5}{2}\\ \Rightarrow\dfrac{1}{4}a=\dfrac{1}{2}\\ \Rightarrow a=\dfrac{1}{2}:\dfrac{1}{4}=2\)
Vậy a = 2. Đa thức M(x) được viết đầy đủ dưới dạng:
\(M\left(x\right)=2x^2+5x-3\)
M(x) có nghiệm là 1/2 nên khi x = 1/2 thì M(x) = 0
\(a\left(\dfrac{1}{2}\right)^2+5.\dfrac{1}{2}-3=0\)
\(\Rightarrow a=2\)
Vậy...
THAY X=A/2 VÀO ĐA THỨC TA CÓ
M(X)=a*1/4+5*1/2-3=0
vậy a=2
a: Bậc là 2
Hệ số cao nhất là 2
Hệ số tự do là -12
b: M+N
=2x^2+5x-12+x^2-8x-1
=3x^2-3x-13
Thay x =\(\frac{1}{2}\)vào đa thức M(x) ta có :
M(x) = a . \(\left(\frac{1}{2}\right)^2\) + 5 . \(\frac{1}{2}\) - 3
=> M(x) = a . \(\frac{1}{4}\)- \(\frac{1}{2}\)
=> M(x) = \(\frac{1}{4}\)a - \(\frac{1}{2}\)
Cho \(\frac{1}{4}\)a - \(\frac{1}{2}\) = 0
=> \(\frac{1}{4}\)a = \(\frac{1}{2}\)
=> a = 2
Vậy hệ số a = 2.
a: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)
Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:
\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)
<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5
lười quá ~~
bài 1
vì đa thức bị chia bậc 2, đa thức chia bậc nhất
=> đa thức thương sẽ có dạng bx+c
theo đề ta có
\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)
vậy a = -5
bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé