K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>5^x=25

=>x=2

`125/5^x=5`

`-> 125/5^x=5/1`

`-> 5*5^x=125`

`->`\(5^{1+x}=125\)

`->`\(5^{1+x}=5^3\)

`->`\(x+1=3\)

`-> x=3-1`

`-> x=2`

Vậy, `5^x=5^2`.

1 tháng 11 2023

a) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\left(-\dfrac{7}{12}\right)\cdot1\dfrac{2}{5}\)

\(\Rightarrow\dfrac{1}{6}x=\left(-\dfrac{7}{12}\right)\cdot\dfrac{7}{5}\)

\(\Rightarrow\dfrac{1}{6}x=-\dfrac{49}{60}\)

\(\Rightarrow x=-\dfrac{49}{60}:\dfrac{1}{6}\)

\(\Rightarrow x=-\dfrac{49}{10}\) 

b) \(\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\dfrac{9}{4}\)

\(\Rightarrow\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\left(\pm\dfrac{3}{2}\right)^2\)

+) \(\dfrac{1}{5}-\dfrac{3}{2}x=\dfrac{3}{2}\)

\(\Rightarrow\dfrac{3}{2}x=\dfrac{1}{5}-\dfrac{3}{2}\)

\(\Rightarrow\dfrac{3}{2}x=-\dfrac{13}{10}\)

\(\Rightarrow x=-\dfrac{13}{10}:\dfrac{3}{2}\)

\(\Rightarrow x=-\dfrac{13}{15}\)

+) \(\left(1,25-\dfrac{4}{5}x\right)^3=-125\)

\(\Rightarrow\left(\dfrac{5}{4}-\dfrac{4}{5}x\right)^3=\left(-5\right)^3\)

\(\Rightarrow\dfrac{5}{4}-\dfrac{4}{5}x=-5\)

\(\Rightarrow\dfrac{4}{5}x=\dfrac{5}{4}+5\)

\(\Rightarrow\dfrac{4}{5}x=\dfrac{25}{4}\)

\(\Rightarrow x=\dfrac{25}{4}:\dfrac{4}{5}\)

\(\Rightarrow x=\dfrac{125}{16}\)

1 tháng 11 2023

a, \(\dfrac{2}{3}\)\(x\) - \(\dfrac{1}{2}\)\(x\) = (- \(\dfrac{7}{12}\)). 1\(\dfrac{2}{5}\)

    \(x\).(\(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)) = (- \(\dfrac{7}{12}\)) . \(\dfrac{7}{5}\)

    \(x\)\(\dfrac{1}{6}\) = - \(\dfrac{49}{60}\)

    \(x\)      = - \(\dfrac{49}{60}\).6

    \(x\)      = -\(\dfrac{49}{10}\)

=>(6/5)^x=(6/5)^3

=>x=3

9 tháng 8 2023

\(\left(\dfrac{6}{5}\right)^x=\left(\dfrac{6}{5}\right)^3\Leftrightarrow x=3\)

Vậy \(x=3\)

QT
Quoc Tran Anh Le
Giáo viên
25 tháng 7 2018

Áp dụng tính chất tỉ lệ thức, ta có: \(\dfrac{25}{5^x}=\dfrac{1}{125}\)

\(\Rightarrow25.125=5^x\)

\(\Rightarrow5^2.5^3=5^x\)

\(\Rightarrow x=5\)

Vậy x = 5

26 tháng 7 2018

\(\dfrac{25}{5^x}=\dfrac{1}{125}\)

= 25 . 125 = 5x

=> 52 . 53 = 5x

<=> 5x =52.53

=> 5x = 55

=> x = 5

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

a) 

$3^{2x+1}.7^y=9.21^x=3^2.(3.7)^x=3^{2+x}.7^x$

Vì $x,y$ là số tự nhiên nên suy ra $2x+1=2+x$ và $y=x$

$\Rightarrow x=y=1$

b) \(\frac{27^x}{3^{2x-y}}=\frac{3^{3x}}{3^{2x-y}}=3^{x+y}=243=3^5\Rightarrow x+y=5(1)\)

\(\frac{25^x}{5^{x+y}}=\frac{5^{2x}}{5^{x+y}}=5^{x-y}=125=5^3\Rightarrow x-y=3\) $(2)$

Từ $(1);(2)\Rightarrow x=4; y=1$

 

2 tháng 8 2018

\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)

\(\rightarrow\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\left(\dfrac{-4}{5}\right)^3\)

\(\rightarrow\dfrac{3}{5}-\dfrac{2}{3}x=\dfrac{-4}{5}\)

\(\rightarrow x=\dfrac{21}{10}\)

a: \(6^x=5\)

=>\(x=log_65\)

b: \(7^{3-x}=5\)

=>\(3-x=log_75\)

=>\(x=3-log_75\)

c: \(\left(\dfrac{3}{5}\right)^{x-2}=\dfrac{27}{125}\)

=>\(\left(\dfrac{3}{5}\right)^{x-2}=\left(\dfrac{3}{5}\right)^3\)

=>x-2=3

=>x=5

d: \(\left(\dfrac{4}{5}\right)^x=\dfrac{5}{4}\)

=>\(\left(\dfrac{4}{5}\right)^x=\left(\dfrac{4}{5}\right)^{-1}\)

=>x=-1

NV
13 tháng 1 2024

a.

\(6^x=5\Rightarrow x=log_65\)

b.

\(7^{3-x}=5\Rightarrow3-x=log_75\)

\(\Rightarrow x=3-log_75\)

c.

\(\left(\dfrac{3}{5}\right)^{x-2}=\dfrac{27}{125}\Rightarrow x-2=log_{\dfrac{3}{5}}\left(\dfrac{27}{125}\right)\)

\(\Rightarrow x-2=3\Rightarrow x=5\)

d.

\(\left(\dfrac{4}{5}\right)^x=\dfrac{5}{4}\Rightarrow\left(\dfrac{4}{5}\right)^x=\left(\dfrac{4}{5}\right)^{-1}\)

\(\Rightarrow x=-1\)

26 tháng 7 2017

cho mk sửa lại

tacó:

\(\dfrac{-64}{125}=\left(\dfrac{-4}{5}\right)^3\)

suy ra\(\dfrac{2}{3}-\dfrac{3}{5}x=\dfrac{-4}{5}\)

\(\dfrac{3}{5}x=\dfrac{2}{3}-\dfrac{-4}{5}\)

\(\dfrac{3}{5}x=\dfrac{22}{15}\)

\(x=\dfrac{22}{15}:\dfrac{3}{5}\)

\(x=\dfrac{22}{9}\)

26 tháng 7 2017

ta có:

\(\dfrac{-64}{125}=\left(\dfrac{-16}{5}\right)^3\)

suy ra \(\dfrac{2}{3}-\dfrac{3}{5}x=\dfrac{-16}{5}\)

\(\dfrac{3}{5}x=\dfrac{2}{3}-\dfrac{-16}{5}\)

\(\dfrac{3}{5}x=\dfrac{58}{15}\)

\(x=\dfrac{58}{15}:\dfrac{3}{5}\)

\(x=\dfrac{58}{9}\)

5 tháng 4 2023

\(\dfrac{5^{x+1}}{125}=\dfrac{1}{25^{x-2}}\\ \dfrac{5^{x+1}}{125}=\dfrac{1}{5^{2x-4}}\\ 5^{x+1}\cdot5^{2x-4}=125\\ 5^{x+1+2x-4}=5^3\\ 5^{\left(x+2x\right)+\left(1-4\right)}=5^3\\ 5^{3x-3}=5^3\\ 3x-3=3\\ 3x=6\\ x=2\)

1) Ta có: \(\left(-\dfrac{2}{3}\right)^2\cdot\dfrac{-9}{8}-25\%\cdot\dfrac{-16}{5}\)

\(=\dfrac{4}{9}\cdot\dfrac{-9}{8}-\dfrac{1}{4}\cdot\dfrac{-16}{5}\)

\(=\dfrac{-1}{2}+\dfrac{4}{5}\)

\(=\dfrac{-5}{10}+\dfrac{8}{10}=\dfrac{3}{10}\)

2) Ta có: \(-1\dfrac{2}{5}\cdot75\%+\dfrac{-7}{5}\cdot25\%\)

\(=\dfrac{-7}{5}\cdot\dfrac{3}{4}+\dfrac{-7}{5}\cdot\dfrac{1}{4}\)

\(=\dfrac{-7}{5}\left(\dfrac{3}{4}+\dfrac{1}{4}\right)=-\dfrac{7}{5}\)

3) Ta có: \(-2\dfrac{3}{7}\cdot\left(-125\%\right)+\dfrac{-17}{7}\cdot25\%\)

\(=\dfrac{-17}{7}\cdot\dfrac{-5}{4}+\dfrac{-17}{7}\cdot\dfrac{1}{4}\)

\(=\dfrac{-17}{7}\cdot\left(\dfrac{-5}{4}+\dfrac{1}{4}\right)\)

\(=\dfrac{17}{7}\)

4) Ta có: \(\left(-2\right)^3\cdot\left(\dfrac{3}{4}\cdot0.25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)

\(=\left(-8\right)\cdot\left(\dfrac{3}{4}\cdot\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)

\(=\left(-8\right)\cdot\dfrac{3}{16}:\dfrac{54-28}{24}\)

\(=\dfrac{-3}{2}\cdot\dfrac{24}{26}\)

\(=\dfrac{-72}{52}=\dfrac{-18}{13}\)