Tìm số tự nhiên n để A = \(n^{2018}+n^{2011}+1\)là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(n^{2018}+n^{2008}+1=n^2\left(n^{2016}-1\right)+n\left(n^{2007}-1\right)+\left(n^2+n+1\right)\)
\(\Rightarrow\hept{\begin{cases}n^2\left(n^{2016}-1\right)=n^2\left[\left(n^3\right)^{672}-1\right]=n^2\left(n^3-1\right)\left(n^{671}+n^{670}+...+1\right)=n^2\left(n-1\right)\left(n^2+n+1\right)\left(...\right)\\n\left(n^{2007}-1\right)=n\left[\left(n^3\right)^{669}-1\right]=n\left(n^3-1\right)\left(n^{668}+n^{667}+...+1\right)=n\left(n-1\right)\left(n^2+n+1\right)\left(...\right)\\n^2+n+1\end{cases}}\)
(Hằng đẳng thức mở rộng học ở toán 8 nâng cao)
Cộng 3 vế lại ta có:
\(n^2\left(n-1\right)\left(n^2+n+1\right)\left(...\right)+n\left(n-1\right)\left(n^2+n+1\right)\left(...\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(.....\right)\)
=> để \(n^{2018}+n^{2008}+1\text{ }\text{ là số nguyên tố thì }\orbr{\begin{cases}n^{2018}+n^{2008}+1=n^2+n+1\\n^2+n+1=1\end{cases}}\)
dễ rồi tự giải tiếp 2 trường hợp nha!!
Với a,m,n nguyên dương (\(a\ge2\))
\(a^{3m+1}+a^{3n+2}+1\)chia hết cho \(a^2+a+1\)(1)
Thật vậy
Ta có: \(a^{3m+1}+a^{3n+2}+1=a^{3m+1}-a+a^{3n+2}-a^2+a^2+a+1\)
\(=a\left(a^{3m}-1\right)+a^2\left(a^{3n}-1\right)+a^2+a+1\)
Vì \(a^{3m}-1;a^{3n}-1\)đều chia hết cho \(a^3-1\)nên chia hết cho \(a^2+a+1\)
\(\Rightarrow a^{3m+1}+a^{3n+2}+1\)chia hết cho \(a^2+a+1\)
Đặt \(A=n^{2018}+n^{2008}+1\)
+, n=1\(\Rightarrow A=3\)là số nguyên tố
+,\(n\ge2\),ta có 2018=672*3+2 ; 2008=669*3+1
Theo (1) ta có \(n^{2018}+n^{2008}+1\)chia hết cho \(n^2+n+1\)nên không là số nguyên tố
Vậy n=1 thì A là số nguyen tố
Với n=0 thì \(A=1\) không là số nguyên tố
Với n=1 thì \(A=3\) là số nguyên tố
Với \(n\ge2\) ta có:
\(A=n^{2018}+n^{2017}+1\)
\(=\left(n^{2018}-n^2\right)+\left(n^{2017}-n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2016}-1\right)+n\left(n^{2016}-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^{672}-1\right]+n\left[\left(n^3\right)^{672}-1\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\cdot A+n\left(n^3-1\right)\cdot B+n^2+n+1\)
\(=\left(n^2+n+1\right)\cdot A'+\left(n^2+n+1\right)\cdot B'+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A'+B'+1\right)\) là hợp số với \(\forall n\ge2\)
Xét n = 0 thì \(A=1\left(l\right)\)
Xét n = 1 thì \(A=3\left(nhan\right)\)
Xét \(n\ge2\)
Ta có:
\(A=n^{2018}+n^{2011}+1\)
\(=\left(n^{2018}-n^2\right)+\left(n^{2011}-n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(\left(n^3\right)^{672}-1\right)+n\left(\left(n^3\right)^{670}-1\right)+\left(n^2+n+1\right)\)
\(=\left(n^3-1\right)X+\left(n^3-1\right)Y+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)X'+\left(n^2+n+1\right)Y'+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+Y'+1\right)\)
Với \(n\ge2\) thì A là tích của 2 số khác 1 nên không thể là số nguyên tố được.
Vậy n cần tìm là 1.
A=N2018+N2011+1
A=N<12018+12011>+1
A=2N+1
VẬY N=-1/2
TỚ KO BIẾT ĐÚNG KO NHÉ