Tìm a,b thuộc z mà
2ab +3a=1-b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}xy+x+y=1\\yz+y+z=3\\xz+x+z=7\end{cases}}\Rightarrow\hept{\begin{cases}xy+x+y+1=2\\yz+y+z+1=4\\xz+x+z+1=8\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(x+z\right)\left(z+1\right)=8\end{cases}}\)
Nhân theo vế:
\(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\Rightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\end{cases}}\)
Thay vào từng trường hợp tìm x;y;z
mk làm phụ mấy câu thôi
a)2a-7 chia hết cho a-1
2a-2-5 chia hết cho a-1
2(a-1)-5 chia hết cho a-1
=>5 chia hết cho a-1 hay a-1EƯ(5)={1;-1;5;-5}
=>aE{2;0;6;-4}
b)3a+4 chia hết cho a-3
3a-9+13 chia hết cho a-3
3(a-3)+13 chia hết cho a-3
=>13 chia hết cho a-3 hay a-3EƯ(13)={1;-1;13;-13}
=>aE{4;2;16;-10}
b, Có : 3a+7b chia hết cho 4
Mà 16a và 8b đều chia hết cho 4
=> 3a+7b+16a-8b chia hết cho 4
=> 19a-b chia hết cho 4
=> ĐPCM
Tk mk nha